Pololu 5V, 5.5A Step-Down Voltage Regulator D36V50F5

Rating:
100% of 100
SKU: POLOLU-4091 Brand: Pololu
This powerful synchronous switching step-down (or buck) regulator takes an input voltage of up to 50 V and efficiently reduces it to 5 V.
$42.20 AUD, inc GST
$38.36 AUD, exc GST

In stock, ships same business day if ordered before 2PM
Delivered by Tue, 5th of Mar

Quantity Discounts:

  • 10-25 $37.21 (exc GST)
  • 25+ $36.45 (exc GST)
- +

3 from local stock, 1 supplier stock; your order will dispatch between Dec 1 to Dec 10. And yes, stock levels and lead times are accurate!

Shipping:

  • $6+ Standard (5+ days*, tracked)
  • $10+ Express (2+ days*, tracked)
  • FREE Pickup (Newcastle only - must order online*)

Shipping costs may increase for heavy products or large orders.

Exact shipping can be calculated on the view cart page.

*Conditions apply, see shipping tab below.

The D36V50Fx family of buck (step-down) voltage regulators generates lower output voltages from input voltages as high as 50 V. They are switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters), which makes them much more efficient than linear voltage regulators, especially when the difference between the input and output voltage is large. These regulators can typically support continuous output currents between 2 A and 9 A, depending on the input voltage and output voltage (see the Maximum continuous output current section below). In general, the available output current is a little higher for the lower-voltage versions than it is for the higher-voltage versions, and it decreases as the input voltage increases.

This family includes six versions with fixed output voltages ranging from 3.3 V to 12 V:

The regulators have input reverse voltage protection up to 40 V, output undervoltage and overvoltage protection, over-current protection, and short-circuit protection. A thermal shutdown feature also helps prevent damage from overheating and a soft-start feature limits the inrush current and gradually ramps the output voltage on startup.

If you do not need quite as much current, consider the very similar D36V28Fx family of step-down voltage regulators, which can deliver up to 4 A in a wide range of output voltages.

Pololu manufacture these boards in-house at Pololu's Las Vegas facility, which gives Pololu the flexibility to make these regulators with customized components to better meet the needs of your project. For example, if you have an application where the input voltage will always be below 20 V and efficiency is very important, Pololu can make these regulators a bit more efficient at high loads by replacing the 40V reverse voltage protection MOSFET with a 20V one. Pololu can also customize the output voltage. If you are interested in customization, please contact us.

Details for item #4091

5V, 5.5A Step-Down Voltage Regulator D36V50F5, top view.

5V, 5.5A Step-Down Voltage Regulator D36V50F5, bottom view.

Features

  • Input voltage: 5.5 V to 50 V (minimum input subject to dropout voltage considerations; see the dropout voltage section for details)
  • Output voltage: 5 V with 4% accuracy
  • Typical maximum continuous output current: 3.5 A to 8 A (see the maximum continuous output current graph below)
  • Typical efficiency of 80% to 95%, depending on input voltage, output voltage, and load (see the efficiency graph below)
  • Switching frequency: ~500 kHz under heavy loads
  • Power-save mode with ultrasonic operation that increases light load efficiency by reducing switching frequency, but keeps it above the audible range (20 kHz)
  • 2 mA to 4 mA typical no-load quiescent current (see the quiescent current graph below)
  • Enable input with precise cutoff threshold for disconnecting the load and putting the regulator into a low-power state that draws approximately 10 µA to 20 µA per volt on VIN
  • “Power good” output indicates when the regulator cannot adequately maintain the output voltage
  • Output undervoltage and overvoltage protection
  • Soft-start feature limits inrush current and gradually ramps output voltage
  • Integrated reverse-voltage protection up to 40 V, over-current and short-circuit protection, over-temperature shutoff
  • Compact size: 1" × 1" × 0.375" (25.4 mm × 25.4 mm × 9.5 mm)
  • Three 0.086" mounting holes for #2 or M2 screws

Step-Down Voltage Regulator D36V50Fx, side view.

Connections

This regulator has six connections, some of which are duplicated on multiple pins: power good (PG), enable (EN), input voltage (VIN), input voltage after reverse protection (VRP), output voltage (VOUT), and ground (GND).

The “power good” indicator, PG, is an open-drain output that goes low when the regulator’s output voltage either rises more than 20% above or falls more than 10% below the nominal voltage (with hysteresis). An external pull-up resistor is required to use this pin.

The regulator, which is enabled by default, can be put into a low-power sleep state by reducing the voltage on the EN pin below 1.2 V, and it can be brought out of this state again by increasing the voltage on EN past 1.35 V. The quiescent current draw in this sleep mode is dominated by the current in the 100 kO pull-up resistor from ENABLE to VIN and in the reverse-voltage protection circuit, which altogether will be between 10 µA and 20 µA per volt on VIN. The tight tolerance of the enable input allows a precise low-VIN cutoff to be set, such as with the output of an external voltage divider powered by VIN, which is useful for battery powered applications where draining the battery below a particular voltage threshold could permanently damage it.

The input voltage, VIN, powers the regulator. Voltages between 4.5 V and 50 V can be applied to VIN, but generally the effective lower limit of VIN is VOUT plus the regulator’s dropout voltage, which varies approximately linearly with the load (see below for graphs of the dropout voltage as a function of the load).

VRP provides access to the input voltage after reverse-voltage protection; this can be used as an output to power other devices, or the input voltage can be connected to VRP instead of VIN to bypass the reverse protection.

VOUT is the regulated output voltage.

Step-Down Voltage Regulator D36V50Fx with included hardware.

All of the connections are arranged on a 0.1" grid for compatibility with solderless breadboards, connectors, and other prototyping arrangements that use a 0.1" grid. The PG connection is the only one not accessible along the edge of the board. A 1×12 straight male header strip is included with the regulator.

The power connections (VIN, VRP, VOUT, and GND) are duplicated across both rows of through-holes, allowing two header pins to be used for each connection. Note that the EN and PG pins are not duplicated and are adjacent on different rows, so if you intend to use the regulator on a breadboard, be careful to avoid installing header pins in a way that shorts EN to PG. (In the picture below, note that the PG pin is omitted to avoid shorting it to EN.)

Each header pin is only rated for 3 A (6 A combined per pair), and solderless breadboards are usually not intended to handle more than a few amps, so for higher-power applications, thick wires should be soldered directly to the board.

Step-Down Voltage Regulator D36V50Fx, assembled on breadboard.

Typical efficiency

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns.

Maximum continuous output current

The maximum achievable output current of these regulators varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows maximum output currents that these regulators can deliver continuously at room temperature in still air and without additional heat sinking.

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Quiescent current

The quiescent current is the current the regulator uses just to power itself, and the graph below shows this for the different regulator versions as a function of the input voltage. The module’s EN input can be driven low to put the board into a low-power state where it typically draws between 10 µA and 20 µA per volt on VIN.

Typical dropout voltage

The dropout voltage of a step-down regulator is the minimum amount by which the input voltage must exceed the regulator’s target output voltage in order to ensure the target output can be achieved. For example, if a 5 V regulator has a 1 V dropout voltage, the input must be at least 6 V to ensure the output is the full 5 V. Generally speaking, the dropout voltage increases as the output current increases. The graph below shows the dropout voltages for the different members of this regulator family:

People often buy this product together with:

5V, 3.2A Step-Down Voltage Regulator D36V28F55V, 3.2A Step-Down Voltage Regulator D36V28F5
3.3V, 6.5A Step-Down Voltage Regulator D36V50F33.3V, 6.5A Step-Down Voltage Regulator D36V50F3
6V, 5.5A Step-Down Voltage Regulator D36V50F66V, 5.5A Step-Down Voltage Regulator D36V50F6

Dimensions

Size: 1" × 1" × 0.375"1
Weight: 7.0 g1

General specifications

Minimum operating voltage: 5.5 V2
Maximum operating voltage: 50 V
Continuous output current: 5.5 A3
Output voltage: 5 V
Reverse voltage protection?: Y4
Maximum quiescent current: 4 mA5
Output type: fixed 5V

Identifying markings

PCB dev codes: reg24d
Other PCB markings: 0J12574, blank white box

Notes:

1
Without included optional headers.
2
Subject to dropout voltage considerations. See the dropout voltage graph under the description tab for more information.
3
Typical continuous output current at 36 V in. Actual achievable continuous output current is a function of input voltage and is limited by thermal dissipation. See the output current graph under the description tab for more information.
4
To -40 V. Connecting supplies over 40 V in reverse can damage the device.
5
While enabled with no load. Can be reduced to under 1 mA using the enable pin.

File downloads

Product Comments

Exact shipping can be calculated on the view cart page (no login required).

Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).

We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):

  • $3+ for Stamped Mail (typically 10+ business days, not tracked, only available on selected small items)
  • $6+ for Standard Post (typically 6+ business days, tracked)
  • $10+ for Express Post (typically 2+ business days, tracked)
  • Pickup - Free! Only available to customers who live in the Newcastle region (must order online and only pickup after we email to notify you the order is ready). Orders placed after 2PM may not be ready until the following business day.

Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.

Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.

International Orders - the following rates are for New Zealand and will vary for other countries:

  • $11+ for Pack and Track (3+ days, tracked)
  • $16+ for Express International (2-5 days, tracked)

If you order lots of gear, the postage amount will increase based on the weight of your order.

Our physical address (here's a PDF which includes other key business details):

Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia

Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.

Have a product question? We're here to help!

Write Your Own Review

Videos

View All

Guides

How to Drive High Power LEDs – 3W Aluminum Backed Star LEDs

High power LEDs (Light Emitting Diodes) have different requirements that need to be met when compar...
High power LEDs (Light Emitting Diodes) have different requirements that need to be met when compar...

The Maker Revolution

The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...
The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...

How to Use DC Regulators/Converters

So, you might have the best project in the world, an amazing idea and design, but no matter how clev...
So, you might have the best project in the world, an amazing idea and design, but no matter how clev...

Powering Portable Projects: Batteries

Want to make your project portable? We've put together a quick guide to get you up to speed on batte...
Want to make your project portable? We've put together a quick guide to get you up to speed on batte...

Projects

mmPi-Pico HAT

I use a Raspberry Pi running EmonCms for collecting sensor data and controlling devices around the ...
I use a Raspberry Pi running EmonCms for collecting sensor data and controlling devices around the ...

Solar Charging Station

The aim of this project was to use the sun to charge some batteries with 1W and 2W Seeed solar ...
The aim of this project was to use the sun to charge some batteries with 1W and 2W Seeed solar ...
Feedback

Please continue if you would like to leave feedback for any of these topics:

  • Website features/issues
  • Content errors/improvements
  • Missing products/categories
  • Product assignments to categories
  • Search results relevance

For all other inquiries (orders status, stock levels, etc), please contact our support team for quick assistance.

Note: click continue and a draft email will be opened to edit. If you don't have an email client on your device, then send a message via the chat icon on the bottom left of our website.

Makers love reviews as much as you do, please follow this link to review the products you have purchased.