Available with a lead time
Expect dispatch between Jan 31 and Feb 03
Quantity Discounts:
Step-Down Voltage Regulator D30V30Fx, assembled on breadboard. |
---|
The D30V30Fx family of buck (step-down) voltage regulators generates lower output voltages from input voltages as high as 45 V. They are switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters), which makes them much more efficient than linear voltage regulators, especially when the difference between the input and output voltage is large. These regulators can typically support continuous output currents between 2 A and 4 A, depending on the input voltage and output voltage (see the Maximum continuous output current section below). In general, the available output current is a little higher for the lower-voltage versions than it is for the higher-voltage versions, and it decreases as the input voltage increases.
This family includes seven versions with fixed output voltages ranging from 3.3 V to 15 V:
The regulators have reverse voltage protection up to 40 V, input under-voltage lockout, over-current protection, and short-circuit protection. A thermal shutdown feature also helps prevent damage from overheating and a soft-start feature limits the inrush current and gradually ramps the output voltage on startup.
If you need more output current, consider the very similar D36V50Fx family of step-down voltage regulators, and if you need higher input voltages, consider the very similar D36V28Fx family.
Pololu manufacture these boards in-house at Pololu's Las Vegas facility, which gives Pololu the flexibility to make these regulators with customized components to better meet the needs of your project. For example, if you have an application where the input voltage will always be below 20 V and efficiency is very important, Pololu can make these regulators a bit more efficient at high loads by replacing the 40V reverse voltage protection MOSFET with a 20V one. Pololu can also customize the output voltage. If you are interested in customization, please contact us.
Step-Down Voltage Regulator D30V30Fx, side view. |
---|
Details for item #4895
|
|
Features
Using the Regulator
Connections
This regulator has six connections: power good (PG), enable (EN), input voltage (VIN), output voltage (VOUT), and two ground (GND) connections.
The “power good” indicator, PG, is an open-drain output that goes low when the regulator’s output voltage either rises more than 7.5% above or falls more than 9% below the nominal voltage (with hysteresis). An external pull-up resistor is required to use this pin.
The regulator, which is enabled by default, can be put into a low-power sleep state by reducing the voltage on the EN pin below 0.85 V, and it can be brought out of this state again by increasing the voltage on EN past 1 V. The shutdown current draw in this sleep mode is dominated by the current in the 100 kO pull-up resistor from EN to VIN and in the reverse-voltage protection circuit, which altogether will be between 10 µA and 20 µA per volt on VIN. (Note that for high input voltages the, shutdown current draw when it is disabled is greater than the quiescent draw while enabled; see the quiescent current graph below for more details.) A low-voltage cutoff can be set by adding an appropriately sized external pull-down resistor between EN and GND. This resistor and the on-board 100 kO pull-up would together form a VIN voltage divider with the output connected to EN.
The input voltage, VIN, powers the regulator. Voltages between 3.3 V and 45 V can be applied to VIN, but generally the effective lower limit of VIN is VOUT plus the regulator’s dropout voltage, which varies approximately linearly with the load (see below for graphs of the dropout voltage as a function of the load).
VOUT is the regulated output voltage.
Included hardware
Step-Down Voltage Regulator D30V30Fx, with included hardware. |
---|
The six connection through-holes are arranged on a 0.1" grid for compatibility with solderless breadboards, connectors, and other prototyping arrangements that use a 0.1" grid. The PG connection is the only one not located along the edge of the board. A 6×1 straight male header strip and a 5×1 right-angle male header strip are included with the regulator; one pin of the straight header can optionally be broken off and soldered into PG.
Typical efficiency
The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns.
Maximum continuous output current
The maximum achievable output current of these regulators varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows maximum output currents that these regulators can deliver continuously at room temperature in still air and without additional heat sinking.
During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.
Quiescent current
The quiescent current is the current the regulator uses just to power itself, and the graph below shows this for the different regulator versions as a function of the input voltage. The module’s EN input can be driven low to put the board into a low-power state where it typically draws between 10 µA and 20 µA per volt on VIN.
Typical dropout voltage
The dropout voltage of a step-down regulator is the minimum amount by which the input voltage must exceed the regulator’s target output voltage in order to ensure the target output can be achieved. For example, if a 5 V regulator has a 1 V dropout voltage, the input must be at least 6 V to ensure the output is the full 5 V. Generally speaking, the dropout voltage increases as the output current increases. The graph below shows the dropout voltages for the different members of this regulator family:
Dimensions
Size: | 0.7" × 0.8" × 0.345"1 |
---|---|
Weight: | 3.3 g1 |
General specifications
Minimum operating voltage: | 9 V2 |
---|---|
Maximum operating voltage: | 45 V |
Continuous output current: | 2.9 A3 |
Output voltage: | 9 V |
Reverse voltage protection?: | Y4 |
Maximum quiescent current: | 13 mA5 |
Identifying markings
PCB dev codes: | reg32a |
---|---|
Other PCB markings: | 0J14242 |
Notes:
File downloads
Dimension diagram of the Step-Down Voltage Regulator D30V30Fx (719k pdf)
3D model of the Step-Down Voltage Regulator D30V30Fx (6MB step)
Drill guide for the Step-Down Voltage Regulator D30V30Fx (15k dxf)
This DXF drawing shows the locations of all of the board’s holes.
Exact shipping can be calculated on the view cart page (no login required).
Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).
We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):
Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.
Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.
International Orders - the following rates are for New Zealand and will vary for other countries:
If you order lots of gear, the postage amount will increase based on the weight of your order.
Our physical address (here's a PDF which includes other key business details):
Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia
Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.
Have a product question? We're here to help!
Makers love reviews as much as you do, please follow this link to review the products you have purchased.
Product Comments