BD65496MUV Single Brushed DC Motor Driver Carrier

SKU: POLOLU-2960 Brand: Pololu
This compact breakout board for ROHM’s BD65496MUV motor driver offers an operating voltage range of 2 V to 16 V and can deliver a continuous 1.2 A (5 A...
$22.70 AUD, inc GST
$20.64 AUD, exc GST

In stock, ships same business day if ordered before 2PM
Delivered by Tue, 21st of May

Quantity Discounts:

  • 10-25 $20.02 (exc GST)
  • 25+ $19.60 (exc GST)
- +

2 from local stock, 1 supplier stock; your order will dispatch between Dec 1 to Dec 10. And yes, stock levels and lead times are accurate!

Shipping:

  • $6+ Standard (5+ days*, tracked)
  • $10+ Express (2+ days*, tracked)
  • FREE Pickup (Newcastle only - must order online*)

Shipping costs may increase for heavy products or large orders.

Exact shipping can be calculated on the view cart page.

*Conditions apply, see shipping tab below.

BD65496MUV Single Brushed DC Motor Driver Carrier, bottom view with dimensions.

The BD65496MUV from ROHM is a tiny H-bridge motor driver IC that can be used for bidirectional control of one brushed DC motor at 2 V to 16 V. It can supply up to about 1.2 A continuously and can tolerate peak currents up to 5 A for a few milliseconds. The BD65496MUV is a great IC, but its small surface-mount package makes it difficult for the typical student or hobbyist to use; Pololu's breakout board makes it easy to use with standard solderless breadboards and 0.1" perfboards. Since this board is a carrier for the BD65496MUV, Pololu recommend careful reading of the BD65496MUV datasheet (481k pdf). The board ships populated with SMD components, including the BD65496MUV and a reverse battery protection circuit.

Features

  • Single-channel H-bridge motor driver with shoot-through protection and internal free-wheeling diodes (can drive one DC motor)
  • Motor supply voltage: 2 V to 16 V
  • Logic supply voltage: 2.5 V to 5.5 V
  • Output current: up to 1.2 A continuous (5 A peak for a few milliseconds)
  • Two possible interface modes: IN/IN or EN/IN (one pin for speed and another for direction)
  • Configurable switching speed allows for PWM frequencies up to 500 kHz
  • Under-voltage lockout on the logic supply and protection against over-temperature
  • Carrier board adds reverse-voltage protection on the motor supply
  • Compact size (0.6"×0.6")

Included hardware

Two 1×6-pin breakaway 0.1" male headers are included with the BD65496MUV motor driver carrier, which can be soldered in to use the driver with breadboards, perfboards, or 0.1" female connectors. (The headers might ship as a single 1×12 piece that can be broken in half.) The right picture above shows the two possible board orientations when used with these header pins (parts visible or silkscreen visible). You can also solder your motor leads and other connections directly to the board.

Using the motor driver

Minimal wiring diagram for connecting a microcontroller to a BD65496MUV Single Brushed DC Motor Driver Carrier (default IN/IN mode).

Motor and power connections are made on one side of the board and control connections are made on the other. The driver requires an operating voltage between 2 V and 16 V to be supplied to the reverse-protected power input, VIN, and a logic voltage between 2.5 V and 5.5 V to be supplied to the VCC pin; the logic voltage can typically be supplied by or shared with the controlling device.

The BD65496MUV offers two possible control interface modes: IN/IN and EN/IN. The PWM (MODE) pin is used to select the control interface. If the PWM (MODE) pin is left disconnected or driven low, as shown in the minimal wiring diagram above, the selected interface is IN/IN, which generally requires two PWM signals, one for INA and another for INB. If this pin is driven high, as shown in the wiring diagram below, the selected interface is EN/IN, which turns the INB pin into a “motor direction” input and the INA pin into an enable input that can be supplied with a PWM signal to control speed.

Minimal wiring diagram for connecting a microcontroller to a BD65496MUV Single Brushed DC Motor Driver Carrier (EN/IN mode).

The PS (power save) pin can be driven low to put the driver into a low-power state and turn off the motor outputs, which is useful if you want to let the motor coast. The PS pin is pulled high through a 47 kO pull-up resistor on the carrier board so that the driver is enabled by default; the quiescent current draw of the board will be dominated by the current through this resistor when the pin is driven low to put the driver to sleep. In most applications, this pin can be left disconnected or can serve primarily as a way to enable coasting. For applications where a low-power mode is desirable, the 47 kO pull-up resistor can be removed (this resistor is located right next to the PS pin), or the logic voltage (VCC) for the driver can be dynamically supplied by a digital output of your microcontroller.

The following truth table (taken directly from the BD65496MUV datasheet) shows how the driver operates:

Pinout

PIN Default State Description
VIN   Reverse-protected power supply input; supply this pin with 2 V to 16 V.
VCC   2.5 V to 5.5 V logic power supply connection. Logic supply current draw is typically only a few milliamps at most, so in many applications this pin can optionally be dynamically powered by a microcontroller digital output.
GND   Ground connection points for the motor and logic supplies. The control source and the motor driver must share a common ground.
OUTA   H-bridge output A.
OUTB   H-bridge output B.
PWM (MODE) LOW Drive mode selection pin. LOW=IN/IN; HIGH=EN/IN.
INA LOW Motor control input A (functions like an enable pin in EN/IN mode).
INB LOW Motor control input B (functions like a direction pin in EN/IN mode).
PS HIGH Sleep/coast input. Drive low to tri-state the driver outputs and enable power-save mode.
TR1 LOW Turn-on and turn-off time selection input 1.
TR2 LOW Turn-on and turn-off time selection input 2.

All of the driver inputs except PS are internally pulled low through 100 kO pull-down resistors. The PS pin is pulled high on the carrier board through a 47 kO pull-up resistor that overpowers the driver IC’s internal 300 kO pull-down.

The TR1 and TR2 pins control the driver’s turn-on and turn-off time. Both pins are low by default, resulting in a default turn-on time of 150 ns (typical) and a default turn-off time of 50 ns (typical); this allows for PWM frequencies up to 500 kHz. If such a high switching frequency is not required, the TR1 and TR2 inputs can be configured for longer turn-on and turn-off times to help reduce electromagnetic interference (EMI). See the datasheet for more information.

Real-world power dissipation considerations

The BD65496MUV datasheet rates this driver for a maximum continuous current of 1.2 A. In Pololu's tests, Pololu found that the chip was able to deliver 1.2 A comfortably over the full operating voltage range, with the driver temperature only approaching the thermal shut down point at the very low end of the motor supply range. At 9 V in, Pololu did not see the driver’s thermal shutdown activate until Pololu pushed the continuous current past 1.5 A for many minutes, but Pololu generally advise against running so close to the limit that the driver overheats. Pololu's tests were conducted at 100% duty cycle with no forced air flow; PWMing the motor will introduce additional heating proportional to the frequency.

This product can get hot enough to burn you long before the chip overheats. Take care when handling this product and other components connected to it.

Schematic

BD65496MUV single brushed DC motor driver carrier schematic diagram.

This schematic is also available as a downloadable pdf (139k pdf).

People often buy this product together with:

DRV8838 Single Brushed DC Motor Driver Carrier DRV8838 Single Brushed DC Motor Driver Carrier
DRV8801 Single Brushed DC Motor Driver Carrier DRV8801 Single Brushed DC Motor Driver Carrier
MAX14870 Single Brushed DC Motor Driver Carrier MAX14870 Single Brushed DC Motor Driver Carrier

Dimensions

Size: 0.6" × 0.6"1
Weight: 0.6 g1

General specifications

Motor driver: BD65496MUV
Motor channels: 1
Minimum operating voltage: 2 V
Maximum operating voltage: 16 V
Continuous output current per channel: 1.2 A
Peak output current per channel: 5 A2
Maximum PWM frequency: 500 kHz3
Minimum logic voltage: 2.5 V
Maximum logic voltage: 5.5 V
Reverse voltage protection?: Y

Identifying markings

PCB dev codes: md28a
Other PCB markings: 0J8950

Notes:

1
Without included hardware.
2
For no longer than 10 ms; duty cycle < 5%.
3
TR1 and TR2 low.

File downloads

Recommended links

Product Comments

Exact shipping can be calculated on the view cart page (no login required).

Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).

We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):

  • $3+ for Stamped Mail (typically 10+ business days, not tracked, only available on selected small items)
  • $6+ for Standard Post (typically 6+ business days, tracked)
  • $10+ for Express Post (typically 2+ business days, tracked)
  • Pickup - Free! Only available to customers who live in the Newcastle region (must order online and only pickup after we email to notify you the order is ready). Orders placed after 2PM may not be ready until the following business day.

Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.

Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.

International Orders - the following rates are for New Zealand and will vary for other countries:

  • $11+ for Pack and Track (3+ days, tracked)
  • $16+ for Express International (2-5 days, tracked)

If you order lots of gear, the postage amount will increase based on the weight of your order.

Our physical address (here's a PDF which includes other key business details):

Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia

Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.

Have a product question? We're here to help!

Write Your Own Review

Guides

The Maker Revolution

The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...
The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...

Projects

Analogue Quad Oscillator Drone Synth

I have a peer-reviewed study on my desk and it confidently tells me that all the capacitors...
I have a peer-reviewed study on my desk and it confidently tells me that all the capacitors...

Raspberry Pi Microscope

The Raspberry Pi Microscope was put together to help with soldering PCBs that have small surface mo...
The Raspberry Pi Microscope was put together to help with soldering PCBs that have small surface mo...

Accurate IoT Clock With ESP8266

Being punctual is important. Hence accurate time is required. Clocks tend to miss out when it comes...
Being punctual is important. Hence accurate time is required. Clocks tend to miss out when it comes...
Feedback

Please continue if you would like to leave feedback for any of these topics:

  • Website features/issues
  • Content errors/improvements
  • Missing products/categories
  • Product assignments to categories
  • Search results relevance

For all other inquiries (orders status, stock levels, etc), please contact our support team for quick assistance.

Note: click continue and a draft email will be opened to edit. If you don't have an email client on your device, then send a message via the chat icon on the bottom left of our website.

Makers love reviews as much as you do, please follow this link to review the products you have purchased.