Pololu 5V Step-Up/Step-Down Voltage Regulator S9V11F5

Rating:
100% of 100
SKU: POLOLU-2836 Brand: Pololu
The S9V11F5 switching step-up/step-down regulator efficiently produces 5 V from input voltages between 2 V and 16 V. (Note: it requires an input voltage of at least 3 V to start, but it can operate down to 2 V after startup.)
$15.10 AUD, inc GST
$13.73 AUD, exc GST

In stock, ships same business day if ordered before 2PM
Delivered by Tue, 27th of Feb

Quantity Discounts:

  • 10-25 $13.32 (exc GST)
  • 25+ $13.04 (exc GST)
- +

1 from local stock, 1 supplier stock; your order will dispatch between Dec 1 to Dec 10. And yes, stock levels and lead times are accurate!

Shipping:

  • $6+ Standard (5+ days*, tracked)
  • $10+ Express (2+ days*, tracked)
  • FREE Pickup (Newcastle only - must order online*)

Shipping costs may increase for heavy products or large orders.

Exact shipping can be calculated on the view cart page.

*Conditions apply, see shipping tab below.

February 2022 update: Pololu have released newer S13VxF5 step-up/step-down regulators regulators that could be better alternatives to this product, especially when availability and pricing of this product is restricted by the global parts shortages.

The S9V11x family of efficient switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters) use a buck-boost topology to convert both higher and lower input voltages to a regulated output voltage. They take input voltages from 2 V to 16 V and increase or decrease them as necessary, offering a typical efficiency of over 85% and a typical output current of up to 1.5 A. The flexibility in input voltage offered by this family of regulators is especially well-suited for battery-powered applications in which the battery voltage begins above the regulated voltage and drops below as the battery discharges. Without the typical restriction on the battery voltage staying above the required voltage throughout its life, new battery packs and form factors can be considered.

The different members of this family offer different output voltage options, from fixed voltages with selectable alternatives to adjustable voltages that can be set anywhere between 2.5 V and 9 V using a precision 12-turn potentiometer. Some versions also have an adjustable low-voltage cutoff that can be set anywhere in the 2 V to 16 V output voltage range and used to prevent your battery from over-discharging. This is particularly useful for battery chemistries that can be damaged when over-discharged, including Li-ion and LiPo. The chart below lists all the regulators in the S9V11x family along with the key features of each version:

Regulator Input (V) Output (V) Low-voltage cutoff Size Price
#2868 S9V11MACMA 2* – 16 2.5 – 9 (fine-adjust) fine-adjust 0.50" × 0.60" × 0.25" $16.95
#2869 S9V11MA 2.5 – 9 (fine-adjust) $13.95
#2870 S9V11F5S6CMA 5 (6 V selectable) fine-adjust $13.95
#2871 S9V11F3S5CMA 3.3 (5 V selectable) fine-adjust $13.95
#2872 S9V11F3S5 3.3 (5 V selectable) 0.50" × 0.60" × 0.17" $10.95
#2873 S9V11F3S5C3 3.3 (5 V selectable) 3 V (fixed) $10.95
#2836 S9V11F5 5 0.30" × 0.45" × 0.17" $19.95
 
* The regulator has a minimum start-up voltage of 3 V, but it can operate down to 2 V after startup. It is disabled when the input voltage is below the low-voltage cutoff.

These regulators have short-circuit protection, and thermal shutdown prevents damage from overheating; they do not have reverse-voltage protection. Note that the startup current is limited to approximately 700 mA until the output voltage reaches the nominal voltage; after startup, the available current is a function of the input voltage (see the Typical efficiency and output current section below).

Features

  • Input voltage: 2 V to 16 V (note: this regulator requires 3 V to start, but it can operate down to 2 V after startup)
  • Fixed 5 V output with +5/-3% accuracy
  • Typical maximum continuous output current: 1.5 A (when input voltage is around 5 V; the Typical Efficiency and Output Current section below shows how the achievable continuous output current depends on the input voltage)
  • Power-saving feature maintains high efficiency at low currents (quiescent current is less than 0.2 mA)
  • Integrated over-temperature and short-circuit protection
  • Small size: 0.3" × 0.45" × 0.15" (7.6 × 11.4 × 3.8 mm)

Using the Regulator

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Connections

The step-up/step-down regulator has just three connections: the input voltage (VIN), ground (GND), and the output voltage (VOUT). These through-holes are arranged with a 0.1" spacing along the edge of the board for compatibility with standard solderless breadboards and perfboards and connectors that use a 0.1" grid. You can solder wires directly to the board or solder in either the 3×1 straight male header strip or the 3×1 right-angle male header strip that is included. VOUT is labeled on the silkscreen on one side of the board, and GND is in the middle and can be identified by its square pad.

The input voltage, VIN, should be between 3 V and 16 V when the regulator is first powered. After it is running, it can continue operating down to 2 V. Lower inputs can shut down the voltage regulator; higher inputs can destroy the regulator, so you should ensure that noise on your input is not excessive, and you should be wary of destructive LC spikes (see below for more information).

The output voltage, VOUT, is regulated to a fixed 5 V, but it can be as high as 5.2 V when there is little or no load on the regulator.

Typical Efficiency and Output Current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graph below, this switching regulator typically has an efficiency of 85% to 95%. A power-saving feature maintains these high efficiencies even when the regulator current is very low.

The maximum achievable output current of the board varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows maximum output currents that the regulator can deliver continuously at room temperature in still air and without additional heat sinking. The regulator can temporarily deliver up to around 2 A, though it will typically quickly overheat under such conditions and go into thermal shutdown.

Note that the startup current is limited to approximately 700 mA, and currents in excess of this are only available after the output has finished rising to 5 V. Large capacitive loads will generally not pose a problem because they will gradually charge up even with the current limit active, so while they may increase the time it takes the regulator to start up, the regulator should still eventually get to 5 V. A purely resistive load, however, could prevent the regulator from ever reaching 5 V. For example, if you put a 5 O resistor between VOUT and GND and then apply power to the regulator, the output voltage will never rise past 3.5 V, the voltage at which the current draw reaches the 700 mA limit. As such, this regulator is intended for applications like robotics, where any large loads are controllable and can be applied only after the regulator has finished starting up.

LC Voltage Spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s maximum voltage, the regulator can be destroyed. If you are connecting more than about 12 V, using power leads more than a few inches long, or using a power supply with high inductance, Pololu recommend soldering a 33 µF or larger electrolytic capacitor close to the regulator between VIN and GND. The capacitor should be rated for at least 20 V.

More information about LC spikes can be found in Pololu's application note, Understanding Destructive LC Voltage Spikes.

People often buy this product together with:

Pololu 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3 Pololu 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3

Dimensions

Size: 0.3" × 0.45" × 0.15"1
Weight: 0.5 g1

General specifications

Minimum operating voltage: 2 V2
Maximum operating voltage: 16 V
Maximum output current: 1.5 A3
Output voltage: 5 V
Reverse voltage protection?: N
Maximum quiescent current: 0.2 mA4

Identifying markings

PCB dev codes: reg20a
Other PCB markings: 0J10393

Notes:

1
Without included optional headers.
2
Note: the minimum startup voltage is 3V, but the regulator can operate down to 2V after startup.
3
Under typical conditions, where the input voltage is close to the output voltage. Maximum output current can be higher when stepping down and lower when stepping up.
4
With no load. Actual quiescent current depends on input voltage; it is typically under 100 µA for input voltages less than 7 V.

File downloads

Product Comments

Exact shipping can be calculated on the view cart page (no login required).

Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).

We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):

  • $3+ for Stamped Mail (typically 10+ business days, not tracked, only available on selected small items)
  • $6+ for Standard Post (typically 6+ business days, tracked)
  • $10+ for Express Post (typically 2+ business days, tracked)
  • Pickup - Free! Only available to customers who live in the Newcastle region (must order online and only pickup after we email to notify you the order is ready). Orders placed after 2PM may not be ready until the following business day.

Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.

Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.

International Orders - the following rates are for New Zealand and will vary for other countries:

  • $11+ for Pack and Track (3+ days, tracked)
  • $16+ for Express International (2-5 days, tracked)

If you order lots of gear, the postage amount will increase based on the weight of your order.

Our physical address (here's a PDF which includes other key business details):

Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia

Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.

Have a product question? We're here to help!

Write Your Own Review

Videos

View All

Guides

The Maker Revolution

The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...
The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...

How to Use DC Regulators/Converters

So, you might have the best project in the world, an amazing idea and design, but no matter how clev...
So, you might have the best project in the world, an amazing idea and design, but no matter how clev...

Powering Portable Projects: Batteries

Want to make your project portable? We've put together a quick guide to get you up to speed on batte...
Want to make your project portable? We've put together a quick guide to get you up to speed on batte...

Our recommendation on Breadboard Power Supplies

So, you’re looking for the right way to power your breadboard? You’ve found that your Ar...
So, you’re looking for the right way to power your breadboard? You’ve found that your Ar...

Projects

mmPi-Pico HAT

I use a Raspberry Pi running EmonCms for collecting sensor data and controlling devices around the ...
I use a Raspberry Pi running EmonCms for collecting sensor data and controlling devices around the ...

Solar Charging Station

The aim of this project was to use the sun to charge some batteries with 1W and 2W Seeed solar ...
The aim of this project was to use the sun to charge some batteries with 1W and 2W Seeed solar ...
Feedback

Please continue if you would like to leave feedback for any of these topics:

  • Website features/issues
  • Content errors/improvements
  • Missing products/categories
  • Product assignments to categories
  • Search results relevance

For all other inquiries (orders status, stock levels, etc), please contact our support team for quick assistance.

Note: click continue and a draft email will be opened to edit. If you don't have an email client on your device, then send a message via the chat icon on the bottom left of our website.

Makers love reviews as much as you do, please follow this link to review the products you have purchased.