In stock, ships same business day if ordered before 2PM
Delivered by Fri, 6th of Dec
Quantity Discounts:
Note: this product is not recommended for use with 8-bit microcontrollers. Initializing the VL53L5CX and processing its readings require a significant amount of RAM and code space, making this sensor impractical for use with a typical 8-bit microcontroller. (ST’s API for the VL53L5CX typically uses over 90 KB of program memory.) For alternatives that are simpler to use and can work with 8-bit microcontrollers (but do not have the multi-zone or multi-target capabilities of the VL53L5CX), please consider the VL53L1X carrier or VL53L0X carrier.
The VL53L5CX from ST Microelectronics is a long-distance, ranging time-of-flight (TOF) sensor integrated into a compact module. This board is a carrier for the VL53L5CX, so Pololu recommend careful reading of the VL53L5CX datasheet (3MB pdf) before using this product.
The VL53L5CX is effectively a tiny, self-contained lidar system featuring an integrated 940 nm Class 1 laser, which is invisible and eye-safe. Unlike conventional IR sensors that use the intensity of reflected light to estimate the distance to an object, the VL53L5CX uses ST’s FlightSense technology to precisely measure how long it takes for emitted pulses of infrared laser light to reach the objects and be reflected back to a detector. This approach ensures absolute distance measurements independent of ambient lighting conditions and target characteristics (e.g. color, shape, texture, and reflectivity), though these external conditions do affect the maximum range of the sensor.
The VL53L5CX is distinguished from ST’s previous time-of-flight sensors by its multi-zone ranging output: its field of view is divided into a number of zones, configurable as a 4×4 or 8×8 grid, and the sensor provides separate readings for each zone (which can include multiple targets per zone). This effectively makes the VL53L5CX a basic 3D lidar, since instead of measuring only a single distance (1D lidar), it can provide enough data to generate a low-resolution depth map of the environment within its field of view.
A plot of a coffee cup as detected by a VL53L5CX time-of-flight 8×8-zone distance sensor. |
---|
Under favorable conditions, the sensor can report distances up to 4 m (13 ft) with 1 mm resolution. The minimum ranging distance is 20 mm. Ranging measurements are available through the sensor’s I²C (TWI) interface, which is also used to configure sensor settings, and the sensor provides three additional pins: an interrupt output and two inputs to disable and reset the I²C interface.
The VL53L5CX is a great IC, but its small, leadless, LGA package makes it difficult for the typical student or hobbyist to use. It also operates at a recommended voltage of 2.8 V to 3.3 V, which can make interfacing difficult for microcontrollers operating at 5 V. Pololu's breakout board addresses these issues, making it easier to get started using the sensor, while keeping the overall size as small as possible.
The carrier board includes a low-dropout linear voltage regulator that provides the 3.3 V required by the VL53L5CX and allows the sensor to be powered from a 2.8 V to 5.5 V supply. The regulator output is available on the VDD pin and can supply up to a few hundred milliamps to external devices. The breakout board also includes a circuit that shifts the I²C clock and data lines to the same logic voltage level as the supplied VIN, making it simple to interface the board with 5 V systems, and the board’s 0.1" pin spacing makes it easy to use with standard solderless breadboards and 0.1" perfboards. The board ships fully populated with its SMD components, including the VL53L5CX, as shown in the product picture.
For similar sensors, see Pololu's 500 cm VL53L3CX carrier, 400 cm VL53L1X carrier, 200 cm VL53L0X carrier, and 60 cm VL6180X carrier. These are physical drop-in replacements for the VL53L5CX carrier, but they have different APIs, so software for the VL53L5CX will need to be rewritten to work with them. Other than the VL53L3CX, these other sensors have lower resource requirements and can also be used with typical 8-bit microcontrollers. (However, they all lack the multi-zone capability of the VL53L5CX, and only the VL53L3CX shares a multi-target capability with the VL53L5CX.)
Features and specifications
Included components
A 1×8 strip of 0.1" header pins and a 1×7 strip of 0.1" right-angle header pins are included, as shown in the picture below. You can solder the header strip of your choice to the board for use with custom cables or solderless breadboards, or you can solder wires directly to the board itself for more compact installations.
|
|
The board has two mounting holes spaced 0.5" apart that work with #2 and M2 screws (not included).
Using the VL53L5CX
Important note: This product might ship with a protective liner covering the sensor IC. The liner must be removed for proper sensing performance.
Connections
At least four connections are necessary to use the VL53L5CX board: VIN, GND, SCL, and SDA. The VIN pin should be connected to a 2.8 V to 5.5 V source, and GND should be connected to 0 volts. An on-board linear voltage regulator converts VIN to a 3.3 V supply for the VL53L5CX IC. Note that if your input voltage is under 3.6 V, you can connect it directly to VDD instead to bypass the regulator; in this configuration, VIN should remain disconnected.
The I²C pins, SCL and SDA, are connected to built-in level-shifters that make them safe to use at voltages over 3.3 V; they should be connected to an I²C bus operating at the same logic level as VIN.
The LPn and I2C_RST pins are inputs and the INT pin is an open-drain output. LPn and INT are pulled up to 3.3 V by the board, while I2C_RST is pulled down to GND. These three pins are not connected to level-shifters on the board and are not 5V-tolerant, but LPn and INT are usable as-is with 5 V microcontrollers: the microcontroller can read the INT output as long as its logic high threshold is below 3.3 V, and the microcontroller can alternate its own output between low and high-impedance states to drive the LPn pin. Alternatively, Pololu's 4-channel bidirectional logic level shifter can be used externally with those pins.
Pinout
PIN | Description |
---|---|
VDD | Regulated 3.3 V output. A few hundred milliamps is available to power external components. (If you want to bypass the internal regulator, you can instead use this pin as an input for voltages between 2.8 V and 3.6 V with VIN disconnected.) |
VIN | This is the main 2.8 V to 5.5 V power supply connection. The SCL and SDA level shifters pull the I²C lines high to this level. |
GND | The ground (0 V) connection for your power supply. Your I²C control source must also share a common ground with this board. |
SDA | Level-shifted I²C data line: HIGH is VIN, LOW is 0 V |
SCL | Level-shifted I²C clock line: HIGH is VIN, LOW is 0 V |
LPn | This pin is an active-low I²C disable input; the board pulls it up to VDD to enable I²C communication by default. Driving this pin low disables I²C communication (typically used as part of a process to change I²C addresses). This input is not level-shifted. |
INT | Programmable interrupt output (VDD logic level). This output is not level-shifted. |
I2C_RST | This pin is an active-high I²C reset input; the board pulls it down to GND by default. Driving this pin high resets the I²C interface (but not the entire sensor). This input is not level-shifted. |
Schematic diagram
The above schematic shows the additional components the carrier board incorporates to make the VL53L5CX easier to use, including the voltage regulator that allows the board to be powered from a 2.8 V to 5.5 V supply and the level-shifter circuit that allows for I²C communication at the same logic voltage level as VIN. This schematic is also available as a downloadable PDF (102k pdf).
I²C communication
The VL53L5CX can be configured and its distance readings can be queried through the I²C bus. Level shifters on the I²C clock (SCL) and data (SDA) lines enable I²C communication with microcontrollers operating at the same voltage as VIN (2.8 V to 5.5 V). A detailed explanation of the I²C interface on the VL53L5CX can be found in its datasheet, and more detailed information about I²C in general can be found in NXP’s I²C-bus specification (1MB pdf).
The sensor’s 7-bit target address defaults to 0101001b on power-up. It can be changed to another value by writing one of the device configuration registers, but the new address only applies until the sensor is reset or powered off. ST’s UM2884 (1MB pdf) document describes how to use multiple VL53L5CX sensors on the same I²C bus by individually enabling I²C communication on each sensor with its LPn pin and assigning it a unique address.
The I²C interface on the VL53L5CX is compliant with the I²C fast mode (400 kHz) standard.
Sensor configuration and control
In contrast with the information available for many other devices, ST has not publicly released a register map and descriptions or other documentation about configuring and controlling the VL53L5CX. Instead, communication with the sensor is intended to be done through ST’s VL53L5CX ULD API (STSW-IMG023), a set of C functions that take care of the low-level interfacing. To use the VL53L5CX, you can customize the API to run on a host platform of your choice using the information in the API documentation. Alternatively, it is possible to use the API source code as a guide for your own implementation.
If you want to use the VL53L5CX with an Arduino-compatible controller, you can try SparkFun’s VL53L5CX Arduino library, a port of ST’s API that works with the Arduino platform. To install it, search for “SparkFun VL53L5CX” in the Arduino Library Manager. (Note: 8-bit microcontrollers, including that of the Arduino Uno, typically do not have enough RAM or program memory to use with the VL53L5CX, so this library is mainly useful for more powerful MCUs like a 32-bit RP2040 or ESP32.)
Dimensions
Size: | 0.5" × 0.7" × 0.1"1 |
---|---|
Weight: | 0.5 g1 |
General specifications
Resolution: | 1 mm |
---|---|
Maximum range: | 400 cm2 |
Minimum range: | 2 cm |
Interface: | I²C |
Minimum operating voltage: | 2.8 V |
Maximum operating voltage: | 5.5 V |
Supply current: | 100 mA3 |
Identifying markings
PCB dev codes: | irs18a |
---|---|
Other markings: | 0J13648 |
Notes:
File downloads
VL53L5CX datasheet (3MB pdf)
This DXF drawing shows the locations of all of the board’s holes.
UM10204 I²C-bus specification and user manual (1MB pdf)
The official specification for the I²C-bus, which is maintained by NXP.
Recommended links
ST’s product page for the VL53L5CX time-of-flight multizone ranging sensor IC, with links to its most up-to-date datasheet, software, and other resources.
VL53L5CX ULD API (STSW-IMG023)
ST’s Ultra Lite Driver API (application programming interface) for the VL53L5CX.
SparkFun VL53L5CX Arduino Library
This Arduino library by Sparkfun is a port of ST’s VL53L5CX ULD API that works with the Arduino platform.
Exact shipping can be calculated on the view cart page (no login required).
Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).
We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):
Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.
Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.
International Orders - the following rates are for New Zealand and will vary for other countries:
If you order lots of gear, the postage amount will increase based on the weight of your order.
Our physical address (here's a PDF which includes other key business details):
Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia
Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.
Have a product question? We're here to help!
Makers love reviews as much as you do, please follow this link to review the products you have purchased.
Product Comments