TB9051FTG Single Brushed DC Motor Driver Carrier

SKU: POLOLU-2997 Brand: Pololu
This breakout board makes it easy to use Toshiba’s TB9051FTG brushed DC motor driver. It has a wide operating voltage range of 4.5 V to 28 V and can...
$20.45 AUD, inc GST
$18.59 AUD, exc GST

In stock, ships same business day if ordered before 2PM
Delivered by Tue, 7th of May

Quantity Discounts:

  • 10-25 $18.04 (exc GST)
  • 25+ $17.66 (exc GST)
- +

5 from local stock, 1 supplier stock; your order will dispatch between Dec 1 to Dec 10. And yes, stock levels and lead times are accurate!

Shipping:

  • $6+ Standard (5+ days*, tracked)
  • $10+ Express (2+ days*, tracked)
  • FREE Pickup (Newcastle only - must order online*)

Shipping costs may increase for heavy products or large orders.

Exact shipping can be calculated on the view cart page.

*Conditions apply, see shipping tab below.

TB9051FTG Single Motor Driver Carrier, bottom view with dimensions.

The TB9051FTG from Toshiba is an H-bridge motor driver IC that can be used for bidirectional control of a single brushed DC motor at 4.5 V to 28 V. It can supply up to about 2.6 A continuously, and it can deliver peak currents up to 5 A (typical) for a few seconds. The TB9051FTG is a great IC, but its small surface-mount package makes it difficult for the typical student or hobbyist to use; Pololu's breakout board makes it easy to use with standard solderless breadboards and 0.1" perfboards.

Since this board is a carrier for the TB9051FTG, Pololu recommend careful reading of the TB9051FTG datasheet (2MB pdf). The board ships populated with SMD components, including the TB9051FTG and a reverse battery protection circuit.

For those who need to control two motors, Pololu also have dual-channel TB9051FTG boards available in the form factors of a Raspberry Pi expansion board and an Arduino shield (the shield version is also designed to work as a general-purpose dual motor driver that can be used with other microcontroller boards outside of the Arduino environment).

Features

  • Single-channel H-bridge motor driver
  • Motor supply voltage: 4.5 V to 28 V
  • Output current: up to 2.6 A continuous (5 A peak)
  • Automatic current chopping feature helps prevent overheating by gracefully reducing power rather than abruptly shutting down
  • Under-voltage lockout and protection against over-current/short-circuit and over-temperature
  • Carrier board adds reverse-voltage protection
  • Active-low error output indicates over-current, over-temperature, under-voltage, or VCC over-voltage condition
  • Compact size (1.0" × 1.0")
  • Exposed solderable ground pad below the driver IC on the bottom of the PCB

Included hardware

This product ships with all surface-mount components—including the TB9051FTG driver IC—installed as shown in the product picture. However, soldering is required for assembly of the included through-hole parts: one 1×17-pin breakaway 0.1" male header and two 2-pin, 3.5 mm terminal blocks (for board power and motor outputs).

The 0.1" male header can be broken or cut into smaller pieces as desired and soldered into the smaller through-holes. These headers are compatible with solderless breadboards, 0.1" female connectors, and Pololu's premium and pre-crimped jumper wires. The terminal blocks can be soldered into the larger holes to allow for convenient temporary connections of unterminated power and motor wires (see Pololu's short video on terminal block installation). You can also solder your motor leads and other connections directly to the board for the most compact installation.

Using the motor driver

Motor and power connections are made on one side of the board and control connections are made on the other. The driver requires an operating voltage between 4.5 V and 28 V to be supplied to the reverse-protected power input, VIN, and a 5 V regulated logic voltage to be supplied to VCC. The VM pin provides convenient access to the reverse-protected motor voltage.

For drive-brake operation (also known as slow decay) with two PWM-capable control lines, the enable pins’ default states can be overridden (EN tied high and ENB tied low) to enable the driver; the adjacent VCC and GND pins provide convenient places to make these connections. The two PWM pins then control the state of the corresponding outputs (up to 20 kHz PWM frequency), as shown in the following simplified truth table:

TB9051FTG simplified truth table (PWM1 + PWM2)
Inputs Outputs Operation
EN ENB PWM1 PWM2 OUT1 OUT2
1 0 PWM 0 PWM (H/L) L forward/brake at speed PWM %
0 PWM L PWM (H/L) reverse/brake at speed PWM %
0 0 L L brake low (outputs shorted to ground)
1 1 L L
0 X X X Z Z coast (outputs floating/disconnected)
X 1 X X Z Z

Alternatively, you can hold PWM1 and PWM2 at fixed levels to set the motor direction and apply a PWM signal to EN (or an inverted PWM signal to ENB) to set the speed, which results in drive-coast operation (also known as fast decay). This increases the number of I/O lines to three, but only one of them needs to be PWM-capable, as shown in this simplified truth table:

TB9051FTG simplified truth table (PWM1 + PWM2 + EN)
Inputs Outputs Operation
EN ENB PWM1 PWM2 OUT1 OUT2
PWM 0 1 0 PWM (H/Z) PWM (L/Z) forward/coast at speed PWM %
0 1 PWM (L/Z) PWM (H/Z) reverse/coast at speed PWM %
0 X X X Z Z coast (outputs floating/disconnected)
X 1 X X Z Z

However, note that this second method restricts the PWM frequencies usable with the driver: the motor outputs on the TB9051FTG have a minimum off-time of about 80 microseconds when turned off with EN or ENB, which limits the maximum achievable duty cycle and makes PWM frequencies above a few kilohertz mostly impractical. For example, at 1.25 kHz, each PWM period has a length of 800 µs; if the outputs are off for at least 80 µs, the maximum achievable duty cycle is 90%.)

The TB9051FTG drives its DIAG pin low whenever an under-voltage, VCC over-voltage, over-temperature, or over-current condition occurs. DIAG will also be low whenever either of the enable pins is disabling the driver (they both disable the driver by default). Otherwise, during normal operation, the board pulls DIAG up to VCC.

Over-temperature errors are latched, so the motor outputs will stay off and the DIAG pin will stay asserted until the fault is cleared by toggling one of the enable pins or disconnecting power to the driver. After an over-current error, the driver’s behavior depends on the state of the OCC pin: if OCC is low (default), the outputs remain disabled until the fault is cleared, but if OCC is high, the driver will automatically try to resume operation after a fixed off-time (typically 500 ms). Regardless of the state of OCC, the DIAG pin remains asserted after an over-current error until the fault is cleared.

Under-voltage and VCC over-voltage errors are not latched (the driver will release the DIAG pin and resume operating as soon as the voltage is corrected). An exception is if the driver detects an abnormal voltage on start-up; in this case, it will continue asserting DIAG until the fault is cleared, although it will still allow normal operation in the meantime if there are no other active fault conditions.

Pinout

Pinout diagram of the TB9051FTG Single Brushed DC Motor Driver Carrier.

The default states of some of the TB9051FTG logic input pins requires that external connections be made to use this motor driver. To reduce the number of necessary external connections, the board has three locations where an input can be jumpered to an adjacent pin to override the default. The OCC and EN default-overriding jumpers provide connections to VCC, while the ENB jumper provides a connection to GND. The VCC jumper pads are circles; the ground jumper pad is square.

PIN Default State Description
VIN Reverse-protected 4.5 V to 28 V board power supply input.
GND Ground connection points for the motor and logic supplies. The control source and the motor driver must share a common ground.
VM These pins give access to the motor power supply after the reverse-voltage protection MOSFET (see the board schematic below). They can be used to supply reverse-protected power to other components in the system. VM is generally intended as an output, but it can also be used to supply board power, and some of the VM and GND holes are spaced for the addition of an optional through-hole capacitor.
OUT1 Motor output 1.
OUT2 Motor output 2.
VCC 5 V logic supply input.
OCC LOW Over-current response configuration input: by default, the driver remains disabled after an over-current condition, but if OCC is high, it automatically tries to resume driving after a short delay instead.
EN LOW Enable input: when EN is low, OUT1 and OUT2 are set to high impedance. PWM can be applied to this pin (typically done with ENB low and either PWM1 or PWM2 high). The default is for both enable pins to be disabling the driver.
ENB HIGH Inverted enable input: when ENB is high, OUT1 and OUT2 are set to high impedance. Inverted PWM can be applied to this pin (typically done with EN high and either PWM1 or PWM2 high). The default is for both enable pins to be disabling the driver.
PWM1 LOW Control/PWM input for OUT1.
PWM2 LOW Control/PWM input for OUT2.
OCM Current monitor output: this pin provides an analog current-sense feedback voltage of approximately 500 mV per amp (only active while H-bridge is driving) through an on-board RC filter.
DIAG HIGH Diagnostic error output: driven low when certain faults have occurred or when the driver is disabled by the EN or ENB inputs. Otherwise, the board pulls this pin up to VCC.

Current sensing

The current monitor output, OCM, provides an analog current-sense feedback voltage of approximately 500 mV per A. Note that this output is only active while the H-bridge is driving; it is inactive (low) when the driver is braking or the motor output is high impedance (floating). If the driver is braking, current will continue to circulate through the motor, but the voltage on the OCM pin will not accurately reflect the motor current. Please note that like most motor drivers with integrated current sense, the actual sensitivity can vary significantly from unit to unit, and accuracy can be especially poor at low currents (see the TB9051FTG datasheet (2MB pdf) for more information). Please consider Pololu's Hall effect current sensors as options for adding more consistent and accurate current sensing to your system.

Real-world power dissipation considerations

The TB9051FTG will start chopping its output current at a typical threshold of 6.5 A. However, the chip by itself will typically overheat at lower currents. In Pololu's tests, Pololu found that the chip was able to deliver 5 A for only a few seconds before the chip’s thermal protection kicked in; a continuous current of about 2.6 A was sustainable for many minutes without triggering thermal current limiting or an over-temperature shutdown. The actual current you can deliver will depend on how well you can keep the motor driver cool. The carrier’s printed circuit board is designed to help with this by drawing heat out of the motor driver chip. PWMing the motor will introduce additional heating proportional to the frequency.

Unlike typical H-Bridges, the TB9051FTG has a feature that allows it to gracefully reduce the maximum current limit when the chip temperature approaches its limit. This means that if you push the chip close to its limit, you will see less power to the motor, but it might allow you to avoid a complete shutdown.

This product can get hot enough to burn you long before the chip overheats. Take care when handling this product and other components connected to it.

Schematic diagram

Schematic diagram of the TB9051FTG Single Brushed DC Motor Driver Carrier.

This diagram is also available as a downloadable pdf: TB9051FTG single motor driver carrier schematic (147k pdf)

People often buy this product together with:

Pololu 25D mm Metal Gearmotor Bracket Pair Pololu 25D mm Metal Gearmotor Bracket Pair
Pololu Multi-Hub Wheel w/Inserts for 3mm and 4mm Shafts - 80×10mm, White, 2-Pack Pololu Multi-Hub Wheel w/Inserts for 3mm and 4mm Shafts - 80×10mm, White, 2-Pack
34:1 Metal Gearmotor 25Dx67L mm LP 6V with 48 CPR Encoder 34:1 Metal Gearmotor 25Dx67L mm LP 6V with 48 CPR Encoder

Dimensions

Size: 1.0" × 1.0" × 0.3"1
Weight: 3.1 g1

General specifications

Motor driver: TB9051FTG
Motor channels: 1
Minimum operating voltage: 4.5 V2
Maximum operating voltage: 28 V3
Peak output current per channel: 5 A
Continuous output current: 2.6 A4
Current sense: 0.5 V/A
Maximum PWM frequency: 20 kHz
Reverse voltage protection?: Y5

Identifying markings

PCB dev codes: md36a
Other PCB markings: 0J11154

Notes:

1
Without included hardware.
2
Operation from 4.5 V to 8 V reduces maximum current output.
3
Transient operation (< 500 ms) up to 40 V.
4
Typical results at room temperature with VIN > 8 V and 90% duty cycle. Operation from 4.5 V to 8 V reduces maximum current output.
5
On motor voltage only; logic voltage does not have reverse protection.

File downloads

Recommended links

  • TB9051FTG documentation

    Toshiba’s product page for the TB9051FTG brushed motor driver IC, with links to its most up-to-date datasheet in several languages and other resources.

Product Comments

Exact shipping can be calculated on the view cart page (no login required).

Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).

We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):

  • $3+ for Stamped Mail (typically 10+ business days, not tracked, only available on selected small items)
  • $6+ for Standard Post (typically 6+ business days, tracked)
  • $10+ for Express Post (typically 2+ business days, tracked)
  • Pickup - Free! Only available to customers who live in the Newcastle region (must order online and only pickup after we email to notify you the order is ready). Orders placed after 2PM may not be ready until the following business day.

Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.

Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.

International Orders - the following rates are for New Zealand and will vary for other countries:

  • $11+ for Pack and Track (3+ days, tracked)
  • $16+ for Express International (2-5 days, tracked)

If you order lots of gear, the postage amount will increase based on the weight of your order.

Our physical address (here's a PDF which includes other key business details):

Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia

Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.

Have a product question? We're here to help!

Write Your Own Review

Guides

The Maker Revolution

The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...
The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...

Projects

Raspberry Pi Microscope

The Raspberry Pi Microscope was put together to help with soldering PCBs that have small surface mo...
The Raspberry Pi Microscope was put together to help with soldering PCBs that have small surface mo...

Accurate IoT Clock With ESP8266

Being punctual is important. Hence accurate time is required. Clocks tend to miss out when it comes...
Being punctual is important. Hence accurate time is required. Clocks tend to miss out when it comes...

Days2Bin: Pico Powered Bin Reminder

Our recycle bin is collected fortnightly, but I can never remember which week, and the printed cale...
Our recycle bin is collected fortnightly, but I can never remember which week, and the printed cale...
Feedback

Please continue if you would like to leave feedback for any of these topics:

  • Website features/issues
  • Content errors/improvements
  • Missing products/categories
  • Product assignments to categories
  • Search results relevance

For all other inquiries (orders status, stock levels, etc), please contact our support team for quick assistance.

Note: click continue and a draft email will be opened to edit. If you don't have an email client on your device, then send a message via the chat icon on the bottom left of our website.

Makers love reviews as much as you do, please follow this link to review the products you have purchased.