Available with a lead time
Expect dispatch between Dec 26 and Dec 30
Quantity Discounts:
This board is a compact (0.4" × 0.8") carrier for ST’s LPS22DF MEMS absolute pressure sensor, or barometer; Pololu therefore recommend careful reading of the LPS22DF datasheet (1MB pdf) before using this product. The LPS22DF is a great IC, but its small, leadless, LGA package makes it difficult for the typical student or hobbyist to use. It also operates at voltages below 3.6 V, which can make interfacing difficult for microcontrollers operating at 5 V. This carrier board addresses these issues by incorporating additional electronics, including a 3.3 V voltage regulator and level-shifting circuits, while keeping the overall size as compact as possible. The board ships fully populated with its SMD components, including the LPS22DF, as shown in the product picture.
The LPS22DF features embedded temperature compensation and has many configurable options, including selectable averaging, a choice of output data rates, several FIFO operating modes, and a programmable external interrupt signal. Its pressure output has an absolute pressure accuracy over temperature as low as ±0.5 mbar (0.05 kPa), with RMS noise of 0.0034 mbar (0.34 Pa) with maximum averaging and embedded filtering enabled. Pressure and temperature sensor data, which can be used for altimetry, are available through a digital interface configurable to operate in either I²C (TWI) or SPI mode. (See the Sample Code section below for an Arduino library that can be used to turn this sensor into an altimeter.) The MIPI I3C protocol is also supported on the I²C pins.
Compared to the earlier LPS25HB, the LPS22DF features improved accuracy and reduced noise in the output and a much higher maximum output rate (up to 200 Hz). Its configurable averaging also offers more flexibility in choosing the right balance between minimizing power consumption and reducing noise.
This LPS22DF carrier board is pin-compatible with Pololu's earlier pressure sensor carriers, including Pololu's LPS25HB board. It uses the same I²C address as previous ST pressure sensors, but some of the LPS22DF configuration registers are different, so code written to interface with an earlier pressure sensor might need to be modified to work with an LPS22DF.
The carrier board includes a low-dropout linear voltage regulator that provides the 3.3 V required by the LPS22DF, which allows the sensor to be powered from a 1.8 V to 5.5 V supply. The regulator output is available on the VDD pin and can supply almost 150 mA to external devices. The breakout board also includes a circuit that shifts the I²C/SPI clock and data in lines to the same logic voltage level as the supplied VIN, making it simple to interface the board with 5 V systems, and the board’s 0.1" pin spacing makes it easy to use with standard solderless breadboards and 0.1" perfboards.
Specifications
Included components
A 1×8 strip of 0.1" header pins and a 1×8 strip of 0.1" right-angle header pins are included, as shown in the picture below. You can solder the header strip of your choice to the board for use with custom cables or solderless breadboards, or you can solder wires directly to the board itself for more compact installations.
The board has one mounting hole that works with #2 and M2 screws (not included).
Using the LPS22DF
Connections
Regardless of the interface being used to communicate with the LPS22DF, its VIN pin should be connected to a 1.8 V to 5.5 V source, and GND should be connected to 0 volts. (Alternatively, if you are using the board with a logic voltage of 3.3 V or lower, you can leave VIN disconnected and bypass the built-in regulator by connecting the logic supply directly to VDD.)
A minimum of two logic connections are necessary to use the LPS22DF in I²C mode (this is the default mode): SCL and SDA. These pins are connected to built-in level-shifters that make them safe to use at voltages over 3.3 V; they should be connected to an I²C bus operating at the same logic level as VIN. The remaining pins are not connected to level-shifters on the board and are not 5V-tolerant, but Pololu's 4-channel bidirectional logic level shifter can be used externally with those pins to achieve the same effect.
To use the LPS22DF in SPI mode, four logic connections are typically used: SPC, SDI, SDO, and CS. These should be connected to an SPI bus operating at the same logic level as VIN. The SPI interface operates in 4-wire mode by default, with SDI and SDO on separate pins, but it can be configured to use 3-wire mode so that SDO shares a pin with SDI.
|
|
Pinout
PIN | Description |
---|---|
VDD | Regulated 3.3 V output. Almost 150 mA is available to power external components. (If you want to bypass the internal regulator, you can instead use this pin as a 1.8 V to 3.3 V input with VIN disconnected.) |
VIN | This is the main 1.8 V to 5.5 V power supply connection. The SCL/SPC and SDA/SDI level shifters pull the I²C and SPI bus high bits up to this level. |
GND | The ground (0 V) connection for your power supply. Your I²C or SPI control source must also share a common ground with this board. |
SDA/SDI/SDO | Level-shifted I²C/I3C data line and SPI data in line (also doubles as SDO in 3-wire mode): HIGH is VIN, LOW is 0 V |
SCL/SPC | Level-shifted I²C/I3C/SPI clock line: HIGH is VIN, LOW is 0 V |
SDO/SA0 | SPI data out line in 4-wire mode: HIGH is VDD, LOW is 0 V. Also used as an input to determine I²C slave address (see below). This I/O is not level-shifted. |
CS | SPI enable (chip select). Pulled up to VDD to enable I²C communication by default; drive low to begin SPI communication. This input is not level-shifted. |
INT_DRDY | Programmable interrupt/data-ready indicator, a 3.3-V-logic-level output. This output is not level-shifted. |
Schematic diagram
The above schematic shows the additional components the carrier board incorporates to make the LPS22DF easier to use, including the voltage regulator that allows the board to be powered from a 1.8 V to 5.5 V supply and the level-shifter circuit that allows for I²C and SPI communication at the same logic voltage level as VIN. This schematic is also available as a downloadable PDF (93k pdf).
I²C communication
With the CS pin in its default state (pulled up to VDD), the LPS22DF can be configured and its pressure reading can be queried through the I²C bus. Level shifters on the I²C clock (SCL) and data (SDA) lines enable I²C communication with microcontrollers operating at the same voltage as VIN (1.8 V to 5.5 V). A detailed explanation of the I²C interface on the LPS22DF can be found in its datasheet (1MB pdf), and more detailed information about I²C in general can be found in NXP’s I²C-bus specification (1MB pdf).
In I²C mode, the sensor’s 7-bit slave address has its least significant bit (LSb) determined by the voltage on the SA0 pin. The carrier board pulls SA0 to VDD through a 10 kO resistor, making the LSb 1 and setting the slave address to 1011101b by default. If the pressure sensor’s selected slave address happens to conflict with some other device on your I²C bus, or if you want to use two LPS22DF sensors on the same bus, you can drive SA0 low to set the LSb to 0 (which sets the slave address to 1011100b).
The I²C interface on the LPS22DF is compliant with the I²C fast mode plus (1 MHz) standard, and the sensor also supports MIPI I3C communication through the same pins.
SPI communication
To communicate with the LPS22DF in SPI mode, the CS pin (which the board pulls to VDD through a 10 kO resistor) must be driven low before the start of an SPI command and allowed to return high after the end of the command. Level shifters on the SPI clock (SPC) and data in (SDI) lines enable SPI communication with microcontrollers operating at the same voltage as VIN (1.8 V to 5.5 V).
In the default 4-wire mode, the pressure sensor transmits data to the SPI master on a dedicated data out (SDO) line that is not level-shifted. If the SPI interface is configured to use 3-wire mode instead, the SDI line doubles as SDO and is driven by the LPS22DF when it transmits data to the master. A detailed explanation of the SPI interface on the LPS22DF can be found in its datasheet (1MB pdf).
Sample Code
Pololu have written a basic Arduino library for the LPS22DF that makes it easy to interface this sensor with an Arduino. The library makes it simple to configure the LPS22DF and read the raw pressure data through I²C, and it provides functions for calculating altitude based on the measured pressure for those looking to use this sensor as an altimeter.
Protocol hints
The datasheet provides all the information you need to use this sensor, but picking out the important details can take some time. Here are some pointers for communicating with and configuring the LPS22DF that Pololu hope will get you up and running a little bit faster:
Dimensions
Size: | 0.4" × 0.8" × 0.1"1 |
---|---|
Weight: | 0.5 g1 |
General specifications
Interface: | I²C/I3C, SPI2 |
---|---|
Minimum operating voltage: | 1.8 V |
Maximum operating voltage: | 5.5 V |
Measurement range: | 26 kPa to 126 kPa |
Supply current: | 1 mA |
Identifying markings
PCB dev codes: | ps03a |
---|---|
Other PCB markings: | 0J14060 |
Notes:
File downloads
Schematic diagram of the LPS22DF Pressure/Altitude Sensor Carrier with Voltage Regulator (93k pdf)
Dimension diagram of the LPS22DF Pressure/Altitude Sensor Carrier with Voltage Regulator (671k pdf)
3D model of the LPS22DF Pressure/Altitude Sensor Carrier with Voltage Regulator (4MB step)
Drill guide for the LPS22DF Pressure/Altitude Sensor Carrier with Voltage Regulator (15k dxf)
This DXF drawing shows the locations of all of the board’s holes.
AN5699: LPS22DF application note (519k pdf)
This application note from ST provides usage information and application hints for the LPS22DF pressure sensor.
UM10204 I²C-bus specification and user manual (1MB pdf)
The official specification for the I²C-bus, which is maintained by NXP.
Recommended links
This is a library for the Arduino that interfaces with Pololu's LPS22DF, LPS25HB, LPS25H, and LPS331AP pressure/altitude sensor carriers as well as the pressure sensors on the various AltIMU-10 modules, which can be found here. It makes it simple to read the raw pressure data from the sensor, and it provides functions to help calculate altitude based on the measured pressure.
LPS22DF documentation and resources
ST’s product page for the LPS22DF low-power and high-precision MEMS nano pressure sensor (260–1260 hPa) and absolute digital output barometer, with links to its most up-to-date datasheet, application notes, and other resources.
Exact shipping can be calculated on the view cart page (no login required).
Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).
We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):
Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.
Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.
International Orders - the following rates are for New Zealand and will vary for other countries:
If you order lots of gear, the postage amount will increase based on the weight of your order.
Our physical address (here's a PDF which includes other key business details):
Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia
Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.
Have a product question? We're here to help!
Makers love reviews as much as you do, please follow this link to review the products you have purchased.
Product Comments