ACS71240KEXBLT-030B3 Current Sensor Carrier -30A to +30A, 3.3V

SKU: POLOLU-5241 Brand: Pololu
This board is a simple carrier of Allegro’s ACS71240KEXBLT-030B3 Hall effect-based linear current sensor, which offers a low-resistance (~0.6 mO) current...
$6.70 AUD, inc GST
$6.09 AUD, exc GST

Available with a lead time
Expect dispatch between Dec 26 and Dec 30

Quantity Discounts:

  • 10-25 $5.85 (exc GST)
  • 25+ $5.66 (exc GST)
- +

0 from local stock, 1 supplier stock; your order will dispatch between Dec 1 to Dec 10. And yes, stock levels and lead times are accurate!

Shipping:

  • $7+ Standard (5+ days*, tracked)
  • $11+ Express (2+ days*, tracked)
  • FREE Pickup (Newcastle only - must order online*)

Shipping costs may increase for heavy products or large orders.

Exact shipping can be calculated on the view cart page.

*Conditions apply, see shipping tab below.

Pololu are offering these breakout boards with support from Allegro Microsystems as an easy way to use or evaluate their ACS71240 Hall effect-based, electrically isolated current sensors with overcurrent fault output; Pololu therefore recommend careful reading of the ACS71240 datasheet before using this product. The following list details some of the sensor’s key features:

  • Hall effect-based sensor with electrically isolated current path allows the sensor to be inserted anywhere along the current path and to be used in applications that require electrical isolation.
  • Differential Hall sensing rejects common-mode fields, so the orientation of the sensor relative to uniform external magnetic fields (e.g. the Earth’s magnetic field) has less effect on the measurement.
  • The conductive path internal resistance is typically 0.6 mO, and the PCB is made with 2-oz copper, so very little power is lost in the module.
  • High-bandwidth 120 kHz analog output voltage proportional to AC or DC currents.
  • Less than 5 µs response time.
  • Output is not ratiometric (i.e. the zero point and sensitivity are independent of the actual supply voltage), which provides immunity from noisy supplies.
  • Overcurrent fault output with 1.5 µs response time indicates when the current exceeds the optimized sensing range and can be used for fast short-circuit detection.
  • Integrated digital temperature compensation circuitry allows for near closed loop accuracy over temperature in an open loop sensor.
  • Automotive-grade operating temperature range of -40°C to 125°C.
  • 0.7"×0.8" carrier board offers a variety of ways to insert it into the current path along with 0.1"-pitch (breadboard-compatible) power, ground, and output pins.
  • 3.3V and 5V versions available.
  • Unidirectional and bidirectional versions available.

The pads are labeled on the bottom silkscreen. The silkscreen also shows the direction that is interpreted as positive current flow via the +i arrow.

Details for item #5241

ACS71240KEXBLT-030B3 Current Sensor Carrier -30A to +30A, 3.3V, bottom view.

ACS71240 Current Sensor Carrier.

This carrier features the ACS71240KEXBLT-030B3, which is intended for operation around 3.3 V and is designed for bidirectional input current from -30 A to +30 A. This version can be visually distinguished from the other versions by the “3V3 B30” printed on the bottom side, as shown in the left picture above.

Part Suffix Range Supply Voltage Sensitivity Zero Point Fault Trip Level
030B3 ±30 A (bidirectional) 3.0 V to 3.6 V 44 mV/A 1.65 V ±30 A

Using the sensor

This sensor has five required connections: the input current (IP+ and IP-), logic power (VCC and GND), and the sensor output (VIOUT).

The sensor requires a supply voltage of 3.0 V to 3.6 V to be connected across the VCC and GND pads, which are labeled on the bottom silkscreen. The sensor outputs an analog voltage on VIOUT that is centered at 1.65 V and changes by 44 mV per amp of input current, with positive current increasing the output voltage and negative current decreasing the output voltage:

VIOUT=1.65V+0.044VA⋅IP" role="presentation" style="position: relative;">VIOUT=1.65V+0.044VA·IPVIOUT=1.65V+0.044VA·IP

IP=VIOUT–1.65V0.044VA=(VIOUT–1.65V)⋅22.7AV" role="presentation" style="position: relative;">IP=VIOUT–1.65V0.044VA=(VIOUT–1.65V)·22.7AVIP=VIOUT–1.65V0.044VA=(VIOUT–1.65V)·22.7AV

The output is not ratiometric, so the zero point and sensitivity are independent of the actual supply voltage.

The optional FAULT pin is normally at VCC and is pulled low when the IP current magnitude exceeds 30 A in either direction. This pin only asserts while the fault condition is present (it is not latched).

The FAULT, VIOUT, VCC, and GND pins work with 0.1"-pitch header pins and are compatible with standard solderless breadboards.

You can insert the board into your current path in a variety of ways. Holes with 0.1", 3.5 mm, and 5 mm spacing are available as shown in the diagram above for connecting male header pins or terminal blocks. For high-current applications, you can solder wires directly to the through-holes that best match your wires, or you can use solderless ring terminal connectors. The largest through-holes are big enough for 8 AWG wires or #6 or M3.5 screws, and the second-largest through-holes (and mounting holes) are sized for 12 AWG wires or #2 or M2 screws. The pictures below show some of the possible connection options:

Warning: This product is intended for use below 30 V. Working with higher voltages can be extremely dangerous and should only be attempted by qualified individuals with appropriate equipment and experience.

Schematic and dimension diagrams

ACS72140 current sensor carrier schematic diagram.

The dimension diagram is available as a downloadable PDF (274k pdf).

Real-world power dissipation considerations

Thermal image of a high-current test of a Pololu current sensor carrier (not necessarily this product).

Depending on the version, the ACS71240 can measure up to ±50 A. However, the sensor chip will typically overheat at lower currents. In Pololu's tests, Pololu found that Pololu's ACS71240 carrier board could conduct about 45 A continuously without reaching the thermal limit for the IC. Pololu's tests were conducted at approximately 25°C ambient temperature with no forced air flow.

The actual current you can pass through the sensor will depend on how well you can keep it cool. The carrier’s printed circuit board is designed to help with this by drawing heat out of the sensor chip. Solid connections to the current path pins (such as with thick soldered wires or large, tightly-secured lugs) can also help reduce heat build-up in the sensor and carrier board.

Warning: Exceeding temperature or current limits can cause permanent damage to the sensor. If you are measuring an average continuous current greater than 30 A, Pololu strongly recommend that you monitor the sensor’s temperature and look into additional cooling if necessary.

This product can get hot enough to burn you long before the chip overheats. Take care when handling this product and other components connected to it.

Comparison of the Pololu current sensor carriers

Pololu have a variety of current sensors available with different ranges, sensitivities, and features. The table below summarizes Pololu's selection of active and preferred options:

 
  ACS711 Current
Sensor Carriers
ACS71240 Current
Sensor Carriers
ACS724 Current
Sensor Carriers
ACS37220
Current Sensor
Compact Carriers
ACS37220
Current Sensor
Large Carriers
ACS72981
Current Sensor
Compact Carriers
ACS72981
Current Sensor
Large Carriers
CT432/CT433 TMR
Current Sensor
Compact Carriers
CT432/CT433 TMR
Current Sensor
Large Carriers
Sensor IC Allegro
ACS711KEXT
Allegro
ACS71240
Allegro
ACS724LLCTR
Allegro ACS37220 Allegro ACS72981xLR Allegro CT432/CT433
Sensing technology Hall effect Hall effect Hall effect Hall effect Hall effect XtremeSense™ TMR
(tunneling magnetoresistance)
Logic voltage range (V) 3.0–5.5 3.3V versions: 3.0–3.6
5V versions: 4.5–5.5
4.5–5.5 3.3V versions: 3.15–3.45
5V versions: 4.5–5.5
3.3V versions: 3.0–3.6
5V versions: 4.5–5.5
3.3V versions: 3.0–3.6
5V versions: 4.75–5.5
Current range / sensitivity Bidirectional:(1)
±15.5 A / 90 mV/A
±31 A / 45 mV/A
3.3V Bidirectional:
±10 A / 132 mV/A
±30 A / 44 mV/A
±50 A / 26.4 mV/A

5V Bidirectional:
±10 A / 200 mV/A
±30 A / 66 mV/A
±50 A / 40 mV/A

5V Unidirectional:
0–?50 A / 80 mv/A
5V Bidirectional:(2)
±2.5 A / 800 mV/A
±5 A / 400 mV/A
±10 A / 200 mV/A
±20 A / 100 mV/A
±30 A / 66 mV/A
±50 A / 40 mV/A

5V Unidirectional:(2)
0–?5 A / 800 mv/A
0–?10 A / 400 mv/A
0–?20 A / 200 mv/A
0–?30 A / 133 mV/A
3.3V Bidirectional:
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

5V Bidirectional:
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A
3.3V Bidirectional:
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

5V Bidirectional:
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A
3.3V Bidirectional:(1)
±50 A / 26.4 mV/A
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

3.3V Unidirectional:(1)
0–?50 A / 52.8 mv/A
0–?100 A / 26.4 mv/A
0–?150 A / 17.6 mv/A
0–?200 A / 13.2 mv/A

5V Bidirectional:(2)
±50 A / 40 mV/A
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A

5V Unidirectional:(2)
0–?100 A / 40 mv/A
0–?150 A / 26.7 mv/A
3.3V Bidirectional:(1)
±50 A / 26.4 mV/A
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

3.3V Unidirectional:(1)
0–?50 A / 52.8 mv/A
0–?100 A / 26.4 mv/A
0–?150 A / 17.6 mv/A
0–?200 A / 13.2 mv/A

5V Bidirectional:(2)
±50 A / 40 mV/A
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A

5V Unidirectional:(2)
0–?100 A / 40 mv/A
0–?150 A / 26.7 mv/A
3.3V Bidirectional:
±20 A / 50 mV/A
±30 A / 33.3 mV/A
±50 A / 20 mV/A

5V Bidirectional:
±20 A / 100 mV/A
±30 A / 66.7 mV/A
±65 A / 30.8 mV/A

5V Unidirectional:
0–?50 A / 80 mv/A
0–?70 A / 57.1 mv/A
3.3V Bidirectional:
±50 A / 20 mV/A

5V Bidirectional:
±65 A / 30.8 mV/A

5V Unidirectional:
0–?50 A / 80 mv/A
0–?70 A / 57.1 mv/A
IC path resistance 0.6 mO 0.6 mO 0.6 mO 0.1 mO 0.2 mO 1 mO
PCB 2 layers,
2-oz copper
2 layers,
2-oz copper
2 layers,
2- or 4-oz copper(4)
2 layers,
2-oz copper
6 layers,
2-oz copper
6 layers,
2-oz copper
6 layers,
2-oz copper
2 or 4 layers(5),
2-oz copper
6 layers,
2-oz copper
Max bandwidth 100 kHz 120 kHz 120 kHz(3) 150 kHz 250 kHz 1 MHz
Size 0.7" × 0.8" 0.7" × 0.8" 0.7" × 0.8" 0.7" × 0.8" 1.4" × 1.2" 0.7" × 0.8" 1.4" × 1.2" 0.8" × 1.1" 1.4" × 1.2"
Overcurrent fault output       User-configurable threshold    
Common-mode field rejection            
Non-ratiometric output            

(1) Sensitivity when Vcc = 3.3 V; sensitivity is ratiometric.
(2) Sensitivity when Vcc = 5 V; sensitivity is ratiometric.
(3) Bandwidth can be reduced by adding a filter capacitor.
(4) ±50A version uses 4-oz copper PCB; all other versions use 2-oz copper.
(5) 50A and higher versions use 4-layer PCB; all other versions use 2-layer PCB.

You can also use the following selection box to see all these options sorted by current range:

Alternatives available with variations in these parameter(s):current rangeSelect variant…

Dimensions

Size: 0.7" × 0.8"
Weight: 1.1 g

General specifications

Typical operating voltage: 3.3 V
Current sense: 44 mV/A
Minimum logic voltage: 3.0 V
Maximum logic voltage: 3.6 V
Supply current: 12 mA1
Current range: -?30A to +30A (bidirectional 30A), 3.3V
Current sensor: Allegro ACS71240KEXBLT-030B3

Identifying markings

PCB dev codes: cs02b
Other PCB markings: 0J7387
Other PCB markings: 3V3 B30

Notes:

1
Max.

File downloads

Recommended links

This product is listed in:

Sensors>Current

Product Comments

Exact shipping can be calculated on the view cart page (no login required).

Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).

We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):

  • $3+ for Stamped Mail (typically 10+ business days, not tracked, only available on selected small items)
  • $7+ for Standard Post (typically 6+ business days, tracked)
  • $11+ for Express Post (typically 2+ business days, tracked)
  • Pickup - Free! Only available to customers who live in the Newcastle region (must order online and only pickup after we email to notify you the order is ready). Orders placed after 2PM may not be ready until the following business day.

Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.

Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.

International Orders - the following rates are for New Zealand and will vary for other countries:

  • $12+ for Pack and Track (3+ days, tracked)
  • $16+ for Express International (2-5 days, tracked)

If you order lots of gear, the postage amount will increase based on the weight of your order.

Our physical address (here's a PDF which includes other key business details):

Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia

Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.

Have a product question? We're here to help!

Write Your Own Review

Videos

View All

Guides

The Maker Revolution

The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...
The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...

Getting Hands-on with Sensors

What good is a robot if it can’t interact with the environment around it? Sensors are the back...
What good is a robot if it can’t interact with the environment around it? Sensors are the back...

Projects

WhyzaGC - Feather ESP32 addon to the MightyOhm Gieger Counter

This project is about adding a wireless Adafruit Feather HUZZAH ESP8266 or ESP32 v2 with Adafruit F...
This project is about adding a wireless Adafruit Feather HUZZAH ESP8266 or ESP32 v2 with Adafruit F...
Feedback

Please continue if you would like to leave feedback for any of these topics:

  • Website features/issues
  • Content errors/improvements
  • Missing products/categories
  • Product assignments to categories
  • Search results relevance

For all other inquiries (orders status, stock levels, etc), please contact our support team for quick assistance.

Note: click continue and a draft email will be opened to edit. If you don't have an email client on your device, then send a message via the chat icon on the bottom left of our website.

Makers love reviews as much as you do, please follow this link to review the products you have purchased.