ACS37220LEZATR-150B3 Current Sensor Large Carrier -150A to +150A, 3.3V

SKU: POLOLU-5296 Brand: Pololu
This is the large version of a simple carrier for Allegro’s ACS37220LEZATR-150B3 Hall effect-based, electrically isolated current sensor, which offers an...
$18.55 AUD, inc GST
$16.86 AUD, exc GST

Available with a lead time
Expect dispatch between May 19 and May 22

Quantity Discounts:

  • 10+ $16.19 (exc GST)
  • 25+ $15.68 (exc GST)
- +

0 from local stock, 1 supplier stock; your order will dispatch between Dec 1 to Dec 10. And yes, stock levels and lead times are accurate!

Shipping:

  • $7+ Standard (5+ days*, tracked)
  • $11+ Express (2+ days*, tracked)
  • FREE Pickup (Newcastle only - must order online*)

Shipping costs may increase for heavy products or large orders.

Exact shipping can be calculated on the view cart page.

*Conditions apply, see shipping tab below.

ACS37220 Current Sensor Compact Carrier (top) and Large Carrier (bottom) size comparison.

Pololu are offering these breakout boards with support from Allegro Microsystems as an easy way to use or evaluate their ACS37220 Hall effect-based, electrically isolated current sensors with user-configurable overcurrent fault output; Pololu therefore recommend careful reading of the ACS37220 datasheet before using this product. The following list details some of the sensor’s key features:

  • Hall effect-based sensor with electrically isolated current path allows the sensor to be inserted anywhere along the current path and to be used in applications that require electrical isolation.
  • Extra-low primary current path resistance of 0.1 mO in the sensor IC for higher efficiency.
  • Differential Hall sensing rejects common-mode fields, so the orientation of the sensor relative to uniform external magnetic fields (e.g. the Earth’s magnetic field) has less effect on the measurement.
  • High-bandwidth 150 kHz analog output voltage proportional to AC or DC currents.
  • Less than 4 µs response time.
  • Output is not ratiometric (i.e. the zero point and sensitivity are independent of the actual supply voltage), which provides immunity from noisy supplies.
  • User-configurable overcurrent fault output with 3 µs response time indicates when the current magnitude exceeds the set threshold and can be used for fast short-circuit detection.
  • Integrated digital temperature compensation circuitry allows improved accuracy over the full operating temperature range.
  • Automotive-grade operating temperature range of -40°C to 150°C.
  • Carrier boards, available in compact and large sizes, offer a variety of ways to insert it into the current path along with 0.1"-pitch (breadboard-compatible) power, ground, and output pins.
  • The PCB is made with 2-layer (compact versions) or 6-layer (large versions) 2-oz copper, so very little power is lost in the module.
  • 3.3V and 5V versions available.

The connection points are labeled on the silkscreen, which is on the bottom side of the compact versions and on both sides of the large versions. The bottom silkscreen also shows the direction that is interpreted as positive current flow via the +i arrow.

The following table lists the available ACS37220 carrier options:

Pololu
Item #
Part Suffix Supply Voltage
(V)
Current
Range
Sensitivity
(mV/A)
Zero Point Size PCB
Details

Large Carrier
#5295 100B3 3.15 to 3.45
(3.3 nominal)
±100 A 13.2 1.65 V 1.4"×1.2" 6 layers,
2-oz copper
#5296 150B3 ±150 A 8.8
#5297 100B5 4.5 to 5.5
(5 nominal)
±100 A 20 2.5 V
#5298 150B5 ±150 A 13.3
#5299 200B5 ±200 A 10

Compact Carrier
#5290 100B3 3.15 to 3.45
(3.3 nominal)
±100 A 13.2 1.65 V 0.7"×0.8" 2 layers,
2-oz copper
#5291 150B3 ±150 A 8.8
#5292 100B5 4.5 to 5.5
(5 nominal)
±100 A 20 2.5 V
#5293 150B5 ±150 A 13.3
#5294 200B5 ±200 A 10

Details for item #5296

ACS37220LEZATR-150B3 Current Sensor Large Carrier -150A to +150A, 3.3V, bottom view.

ACS37220 Current Sensor Large Carrier.

This large carrier features the ACS37220LEZATR-150B3, which is intended for nominal 3.3 V operation and is designed for bidirectional input current from -150 A to +150 A. This version can be visually distinguished from the other versions by the “3V3 B15” printed on the bottom side, as shown in the left picture above.

Part Suffix Range Supply Voltage Sensitivity Zero Point Size PCB layers
150B3 ±150 A (bidirectional) 3.15 V to 3.45 V 8.8 mV/A 1.65 V 1.4"×1.2" 6

A compact carrier is also available for this sensor IC for more space-constrained applications or to evaluate the IC’s performance with a smaller PCB area and fewer copper layers for thermal dissipation.

Using the sensor

This sensor has five required connections: the input current (IP+ and IP-), logic power (VDD and GND), and the sensor output (VOUT).

The sensor requires a supply voltage of 3.15 V to 3.45 V to be connected across the VDD and GND pads, which are labeled on the bottom silkscreen. The sensor outputs an analog voltage on VOUT that is centered at 1.65 V and changes by 8.8 mV per amp of input current, with positive current increasing the output voltage and negative current decreasing the output voltage:

V OUT = 1.65 V + 0.0088 V A I P

I P = V OUT 1.65 V 0.0088 V A = ( V OUT 1.65 V ) 114 A V

The output is not ratiometric, so the zero point and sensitivity are independent of the actual supply voltage.

Setting the overcurrent fault threshold

The optional VOC pin can be used to set the overcurrent fault threshold. An on-board 130 kO resistor between VOC and GND sets the default overcurrent fault threshold to approximately 200% of the nominal sensing range, and an external resistor can be added in parallel between VOC and GND to lower this threshold to between 50% and 200%. The following equation gives the value of this parallel resistor, ROC, in kO as a function of overcurrent fault threshold percentage P:

R OC = 130 kO P 197 % P

So for example, to set the overcurrent fault limit to 50% of the nominal sensing range, a 44 kO external resistor can be added between VOC and GND:

R OC = 130 kO 50 % 197 % 50 % ˜ 44 kO

As a shortcut, VOC can be connected directly to ground to set the overcurrent fault limit to 100% of the nominal sensing range.

Alternatively, the on-board resistor can be replaced, or a low-impedance voltage source can be applied directly to the VOC pin as described in the ACS37220 datasheet.

The optional FAULT pin is normally at VDD and is pulled low when the IP current magnitude exceeds the set overcurrent fault threshold in either direction. This pin only asserts while the fault condition is present (it is not latched).

Pololu manufacture these boards in-house at Pololu's Las Vegas facility, which gives Pololu the flexibility to make these current sensors with custom default overcurrent fault thresholds. If you are interested in customization, please contact us.

Making connections to the board

You can insert the board into your current path in a variety of ways. The largest through-holes are 6.4 mm in diameter with 22 mm spacing. These can be used with #12 or M6 screws for attaching various types of lugs or solderless ring terminals, or thick wires up to 4 AWG can be soldered directly to the board. The slots near the edge of the board can accommodate a 4-pin terminal block or other connector with a pitch between 7.5 mm and 9.5 mm. Examples of these kinds of connections are shown in the pictures below. Holes with 0.1", 3.5 mm, and 5 mm spacing are also available for connecting male header pins or terminal blocks, but please note that these smaller connection options are generally not suitable for high currents like those this sensor is intended for.

The FAULT, VOUT, VDD, GND, and VOC pins work with 0.1"-pitch header pins and are compatible with standard solderless breadboards

Warning: This product is intended for use below 30 V. Working with higher voltages can be extremely dangerous and should only be attempted by qualified individuals with appropriate equipment and experience.

Schematic and dimension diagrams

ACS37220 Current Sensor Carrier schematic diagram.

The dimension diagram is available as a downloadable PDF (403k pdf).

Real-world power dissipation considerations

Thermal image of a high-current test of a Pololu current sensor carrier (not necessarily this product).

Depending on the version, the ACS37220 can measure up to ±200 A. However, the sensor chip can overheat at lower currents. In Pololu's tests, Pololu found that Pololu's ACS37220 carrier boards could conduct 60 A continuously while staying well below the thermal limit for the IC. Pololu's tests were conducted at approximately 25°C ambient temperature with no forced air flow.

The actual current you can pass through the sensor will depend on how well you can keep it cool. The carrier’s printed circuit board is designed to help with this by drawing heat out of the sensor chip. Solid connections to the current path pins (such as with thick soldered wires or large, tightly-secured lugs) can also help reduce heat build-up in the sensor and carrier board.

Warning: Exceeding temperature or current limits can cause permanent damage to the sensor. If you are measuring an average continuous current greater than 50 A, Pololu strongly recommend that you monitor the sensor’s temperature and look into additional cooling if necessary.

This product can get hot enough to burn you long before the chip overheats. Take care when handling this product and other components connected to it.

Comparison of the Pololu current sensor carriers

Pololu have a variety of current sensors available with different ranges, sensitivities, and features. The table below summarizes Pololu's selection of active and preferred options:


ACS711 Current
Sensor Carriers
ACS71240 Current
Sensor Carriers
ACS724 Current
Sensor Carriers
ACS37220
Current Sensor
Compact Carriers
ACS37220
Current Sensor
Large Carriers
ACS72981
Current Sensor
Compact Carriers
ACS72981
Current Sensor
Large Carriers
CT432/CT433 TMR
Current Sensor
Compact Carriers
CT432/CT433 TMR
Current Sensor
Large Carriers
Sensor IC Allegro
ACS711KEXT
Allegro
ACS71240
Allegro
ACS724LLCTR
Allegro ACS37220 Allegro ACS72981xLR Allegro CT432/CT433
Sensing technology Hall effect Hall effect Hall effect Hall effect Hall effect XtremeSense™ TMR
(tunneling magnetoresistance)
Logic voltage range (V) 3.0–5.5 3.3V versions: 3.0–3.6
5V versions: 4.5–5.5
4.5–5.5 3.3V versions: 3.15–3.45
5V versions: 4.5–5.5
3.3V versions: 3.0–3.6
5V versions: 4.5–5.5
3.3V versions: 3.0–3.6
5V versions: 4.75–5.5
Current range / sensitivity Bidirectional:(1)
±15.5 A / 90 mV/A
±31 A / 45 mV/A
3.3V Bidirectional:
±10 A / 132 mV/A
±30 A / 44 mV/A
±50 A / 26.4 mV/A

5V Bidirectional:
±10 A / 200 mV/A
±30 A / 66 mV/A
±50 A / 40 mV/A

5V Unidirectional:
0–?50 A / 80 mv/A
5V Bidirectional:(2)
±2.5 A / 800 mV/A
±5 A / 400 mV/A
±10 A / 200 mV/A
±20 A / 100 mV/A
±30 A / 66 mV/A
±50 A / 40 mV/A

5V Unidirectional:(2)
0–?5 A / 800 mv/A
0–?10 A / 400 mv/A
0–?20 A / 200 mv/A
0–?30 A / 133 mV/A
3.3V Bidirectional:
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

5V Bidirectional:
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A
3.3V Bidirectional:
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

5V Bidirectional:
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A
3.3V Bidirectional:(1)
±50 A / 26.4 mV/A
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

3.3V Unidirectional:(1)
0–?50 A / 52.8 mv/A
0–?100 A / 26.4 mv/A
0–?150 A / 17.6 mv/A
0–?200 A / 13.2 mv/A

5V Bidirectional:(2)
±50 A / 40 mV/A
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A

5V Unidirectional:(2)
0–?100 A / 40 mv/A
0–?150 A / 26.7 mv/A
3.3V Bidirectional:(1)
±50 A / 26.4 mV/A
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

3.3V Unidirectional:(1)
0–?50 A / 52.8 mv/A
0–?100 A / 26.4 mv/A
0–?150 A / 17.6 mv/A
0–?200 A / 13.2 mv/A

5V Bidirectional:(2)
±50 A / 40 mV/A
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A

5V Unidirectional:(2)
0–?100 A / 40 mv/A
0–?150 A / 26.7 mv/A
3.3V Bidirectional:(1)
±20 A / 50 mV/A
±30 A / 33.3 mV/A
±50 A / 20 mV/A

3.3V Unidirectional:
0–?50 A / 40 mv/A
0–?65 A / 30.8 mv/A

5V Bidirectional:
±20 A / 100 mV/A
±30 A / 66.7 mV/A
±50 A / 40 mV/A
±65 A / 30.8 mV/A

5V Unidirectional:
0–?50 A / 80 mv/A
0–?70 A / 57.1 mv/A
3.3V Bidirectional:(1)
±50 A / 20 mV/A

3.3V Unidirectional:
0–?50 A / 40 mv/A
0–?65 A / 30.8 mv/A

5V Bidirectional:
±50 A / 40 mV/A
±65 A / 30.8 mV/A

5V Unidirectional:
0–?50 A / 80 mv/A
0–?70 A / 57.1 mv/A
IC path resistance 0.6 mO 0.6 mO 0.6 mO 0.1 mO 0.2 mO 1 mO
PCB 2 layers,
2-oz copper
2 layers,
2-oz copper
2 layers,
2- or 4-oz copper(4)
2 layers,
2-oz copper
6 layers,
2-oz copper
6 layers,
2-oz copper
6 layers,
2-oz copper
2 or 4 layers(5),
2-oz copper
6 layers,
2-oz copper
Max bandwidth 100 kHz 120 kHz 120 kHz(3) 150 kHz 250 kHz 1 MHz
Size 0.7" × 0.8" 0.7" × 0.8" 0.7" × 0.8" 0.7" × 0.8" 1.4" × 1.2" 0.7" × 0.8" 1.4" × 1.2" 0.8" × 1.1" 1.4" × 1.2"
Overcurrent fault output User-configurable threshold
Common-mode field rejection
Non-ratiometric output

(1) Sensitivity when Vcc = 3.3 V; sensitivity is ratiometric.
(2) Sensitivity when Vcc = 5 V; sensitivity is ratiometric.
(3) Bandwidth can be reduced by adding a filter capacitor.
(4) ±50A version uses 4-oz copper PCB; all other versions use 2-oz copper.
(5) 50A and higher versions use 4-layer PCB; all other versions use 2-layer PCB.

Dimensions

Size: 1.4" × 1.2"
Weight: 4.1 g

General specifications

Typical operating voltage: 3.3 V
Current sense: 8.8 mV/A
Minimum logic voltage: 3.15 V
Maximum logic voltage: 3.45 V
Supply current: 16 mA1
Current range: -150A to +150A (bidirectional 150A), 3.3V
Current sensor: Allegro ACS37220LEZATR-150B3

Identifying markings

PCB dev codes: cs06b
Other PCB markings: 0J14835
Other PCB markings: 3V3 B15

Notes:

1
Typical.

File downloads

Recommended links

Product Comments

Exact shipping can be calculated on the view cart page (no login required).

Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).

We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):

  • $3+ for Stamped Mail (typically 10+ business days, not tracked, only available on selected small items)
  • $7+ for Standard Post (typically 6+ business days, tracked)
  • $11+ for Express Post (typically 2+ business days, tracked)
  • Pickup - Free! Only available to customers who live in the Newcastle region (must order online and only pickup after we email to notify you the order is ready). Orders placed after 2PM may not be ready until the following business day.

Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.

Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.

International Orders - the following rates are for New Zealand and will vary for other countries:

  • $12+ for Pack and Track (3+ days, tracked)
  • $16+ for Express International (2-5 days, tracked)

If you order lots of gear, the postage amount will increase based on the weight of your order.

Our physical address (here's a PDF which includes other key business details):

Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia

Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.

Have a product question? We're here to help!

Write Your Own Review

Guides

The Maker Revolution

The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...
The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...

Projects

Spectral Animations with a DIY MSGEQ7 I2C Device

Frequency Reactive LEDs, i2c Protocol, Raspberry Pi, and Other Adventures.Here at Pix Incorpor...
Frequency Reactive LEDs, i2c Protocol, Raspberry Pi, and Other Adventures.Here at Pix Incorpor...

VisionSphere: Camera Motion Detection for Raspberry Pi

A simple camera motion detection system for Raspberry Pi. Definitely written with Aussie's in mind ...
A simple camera motion detection system for Raspberry Pi. Definitely written with Aussie's in mind ...

Arduino E-Paper Clock

This project started with a desire to have a modern digital clock that would use the natural light ...
This project started with a desire to have a modern digital clock that would use the natural light ...
Feedback

Please continue if you would like to leave feedback for any of these topics:

  • Website features/issues
  • Content errors/improvements
  • Missing products/categories
  • Product assignments to categories
  • Search results relevance

For all other inquiries (orders status, stock levels, etc), please contact our support team for quick assistance.

Note: click continue and a draft email will be opened to edit. If you don't have an email client on your device, then send a message via the chat icon on the bottom left of our website.

Makers love reviews as much as you do, please follow this link to review the products you have purchased.