Force-Sensing Linear Potentiometer: 1.4″×0.4″ Strip

SKU: POLOLU-2729 Brand: Pololu
This force-sensing linear potentiometer (FSLP) from Interlink Electronics is a passive component with resistances that depend on the magnitude and location of the force applied at some point along the 1.4″ (3.6 cm) active length of the strip, making it easy to add novel touch interfaces or tactile sensors to your project. An external resistor (typically 4.7 kΩ to 10 kΩ) is required but not included.
$25.30 AUD, inc GST
$23.00 AUD, exc GST

Available with a lead time
Expect dispatch between Apr 30 and May 06

Quantity Discounts:

  • 10-25 $22.31 (exc GST)
  • 25+ $21.85 (exc GST)
- +

0 from local stock, 1 supplier stock; your order will dispatch between Dec 1 to Dec 10. And yes, stock levels and lead times are accurate!

Shipping:

  • $6+ Standard (5+ days*, tracked)
  • $10+ Express (2+ days*, tracked)
  • FREE Pickup (Newcastle only - must order online*)

Shipping costs may increase for heavy products or large orders.

Exact shipping can be calculated on the view cart page.

*Conditions apply, see shipping tab below.

This force-sensing linear potentiometer (FSLP) from Interlink Electronics is a passive component with internal resistances that independently change in response to the location and magnitude of an applied force. This allows a microcontroller with an analog-to-digital converter (ADC), such as an Arduino or A-Star, to easily determine where and how hard the strip is being pressed, enabling advanced touch-control user interfaces (like menu navigation) or sophisticated tactile sensors. The FSLP is effectively a force-sensing resistor (FSR) that can also simultaneously sense position. The video above shows a sample project with the similar 4" FSLP strip being used to control an LED strip: position determines the number of lit LEDs and pressure determines the LED color. This shorter 1.4" FSLP strip could easily be substituted for the one in the video. The Arduino code used in the example is available on github, and it has functions for reading pressure and position that could be helpful in getting started using this sensor. More information about the demo is available in Pololu's FSLP blog post.

The 1.5" × 0.53" strip is light (0.5 g) and extremely thin (0.025"), with an active sensing area of 1.4" × 0.39" and a flexible 0.55" × 0.2" sensor tail for accessing its three terminals (the fourth terminal is not used). It does not appreciably compress when pressure is applied, and while it is flexible, it is intended to be used on smooth, flat surfaces since bending can adversely affect its performance. The FSLP has a masked adhesive backing for easy mounting.

Note: The sensor’s tail does not include a connector, and soldering directly to the exposed copper pads is probably not practical for most applications given its relatively fine 1 mm pitch. Pololu do not carry any connectors that work with this sensor, but JST makes a line of compatible 1.0 mm pitch FFC (flat flexible) connectors (188k pdf). Section 4.4 of the FSLP integration guide (513k pdf) describes the sensor tail in detail.

For a similar FSLP that includes a solderable connector, see Pololu's 4" FSLP strip. It is possible to cut the 4" FSLP strip to shorter lengths, such as 1", which would give it a similar size to this 1.4" version.

Note that this FSLP is not a load cell or strain gauge, and it is not suitable for precision force or pressure measurements. While it can be used for high-resolution dynamic measurements, only qualitative force readings are generally attainable.

Using the sensor

The FSLP is a three-terminal device (the fourth terminal of the sensor tail is not used), and when pressure is applied, its internal circuit is equivalent to three resistors. Reading the magnitude of the pressure requires an external resistor be added to the circuit, so a total of four microcontroller lines are required, two of which must be capable of reading analog voltages. Detailed information about this FSLP, including theory of operation, dimensions, and measurement procedures, is available in the FSLP integration guide (513k pdf). The rest of this section briefly summarizes some of the key points of the measurement procedures listed in the integration guide.

Measuring pressure

The resistance Rp depends directly on the magnitude of the applied pressure, changing from around 300 kO at very light touches to around 1 kO when pressing very hard. If the pin connected to D1 is driven high and pin connected to the bottom of resistor Ro is driven low, the SL pin becomes the output of a resistive voltage divider with Rp on top and the external resistor Ro on the bottom. Measuring the voltage at terminal D2 gives the input voltage to this pressure-dependent voltage divider and allows the pressure measurement to be made independent of R1 and R2, which change depending on where the strip is being touched. Once you have measured the voltage divider input (D2 voltage) and output (SL voltage), you have everything you need to compute Rp, which is directly related to the pressure.

The optimal value for Ro depends on the specific application, but a value between 4.7 kO and 10 kO should work fine for most projects.

Note that when no pressure is applied to the strip, Rp should be many megaohms and the voltage at SL will be pulled almost completely to zero through Ro. You can use this to determine when the strip is not being touched.

Measuring position

The strip also functions as a linear potentiometer, with the applied pressure (e.g. your finger) acting as the wiper. As the point of applied pressure moves from one side of the strip to the other, R1 will get smaller and R2 will get bigger, or vice versa (the sum of R1 and R2 is typically around 10 kO). If the pin connected to D1 is driven high and the pin connected to D2 is driven low, the SL pin becomes the output of this linear potentiometer (the pin connected to the bottom of Ro should be set as a high-impedance input to effectively remove Ro from the circuit). The voltage on the SL pin should range from 0 to Vcc (logic low to logic high) as the pressure application point moves from one extreme to the other.

Note that when no pressure is applied to the strip, the SL pin is essentially floating and will provide no meaningful position measurement. As described in the previous section, you can use the pressure reading to determine when the strip is not being touched so that you know when to ignore the position measurement.

This sensor has high-impedance outputs, which can be difficult to accurately measure using a microcontroller’s ADC. The full measurement procedures in section 5 of the FSLP integration guide (513k pdf) have some helpful techniques for reducing noise and improving accuracy.

FSLP/FSR versions

Interlink refers to this product as their standard FSLP. Pololu also carry their longer 10 cm (4"×0.4") FSLP, which can be optionally be shortened to lengths of 1", 2", or 3".

The two force-sensing linear potentiometers (FSLPs).

If the position of the force is not important for your application, Pololu carry five versions of force-sensing resistors (FSRs) that can be used to measure the amount of applied force but not its location:

A variety of force-sensing resistors (FSRs).

People often buy this product together with:

Force-Sensing Resistor: 1.5Force-Sensing Resistor: 1.5" Square
Force-Sensing Resistor: 0.2Force-Sensing Resistor: 0.2"-Diameter Circle
Force-Sensing Resistor: 0.6Force-Sensing Resistor: 0.6"-Diameter Circle

Dimensions

Size: 1.5" × 0.53" × 0.025"1
Weight: 0.5 g

Notes:

1
With a sensing area of 1.4" × 0.39" and a flexible sensor tail that extends 0.55" from one side.

File downloads

  • FSLP integration guide (513k pdf)

    Detailed information about Interlink Electronic’s FSLP force-sensing linear potentiometers, including theory of operation, performance data, circuit diagrams, and usage tips.

  • JST FMN series connectors for 1.0mm-pitch FCC (188k pdf)

    An example of connectors that are compatible with the 1.4" FSLP’s 4-pin, 1.0 mm pitch FFC (flat flexible) sensor tail.

Recommended links

This product is listed in:

Sensors>Force

Product Comments

Exact shipping can be calculated on the view cart page (no login required).

Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).

We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):

  • $3+ for Stamped Mail (typically 10+ business days, not tracked, only available on selected small items)
  • $6+ for Standard Post (typically 6+ business days, tracked)
  • $10+ for Express Post (typically 2+ business days, tracked)
  • Pickup - Free! Only available to customers who live in the Newcastle region (must order online and only pickup after we email to notify you the order is ready). Orders placed after 2PM may not be ready until the following business day.

Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.

Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.

International Orders - the following rates are for New Zealand and will vary for other countries:

  • $11+ for Pack and Track (3+ days, tracked)
  • $16+ for Express International (2-5 days, tracked)

If you order lots of gear, the postage amount will increase based on the weight of your order.

Our physical address (here's a PDF which includes other key business details):

Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia

Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.

Have a product question? We're here to help!

Write Your Own Review

Videos

View All

Guides

How to use Force Sensitive Resistors with a Raspberry Pi and a ADS1015 ADC

Force-sensitive resistors (FSR) are remarkable electrical components and are proper unsung heroes i...
Force-sensitive resistors (FSR) are remarkable electrical components and are proper unsung heroes i...

The Maker Revolution

The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...
The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...

Getting Hands-on with Sensors

What good is a robot if it can’t interact with the environment around it? Sensors are the back...
What good is a robot if it can’t interact with the environment around it? Sensors are the back...

Projects

WhyzaGC - Feather ESP32 addon to the MightyOhm Gieger Counter

This project is about adding a wireless Adafruit Feather HUZZAH ESP8266 or ESP32 v2 with Adafruit F...
This project is about adding a wireless Adafruit Feather HUZZAH ESP8266 or ESP32 v2 with Adafruit F...
Feedback

Please continue if you would like to leave feedback for any of these topics:

  • Website features/issues
  • Content errors/improvements
  • Missing products/categories
  • Product assignments to categories
  • Search results relevance

For all other inquiries (orders status, stock levels, etc), please contact our support team for quick assistance.

Note: click continue and a draft email will be opened to edit. If you don't have an email client on your device, then send a message via the chat icon on the bottom left of our website.

Makers love reviews as much as you do, please follow this link to review the products you have purchased.