DRV8434 Stepper Motor Driver Carrier

SKU: POLOLU-3762 Brand: Pololu
This breakout board for TI’s DRV8434 microstepping bipolar stepper motor driver offers microstepping down to 1/256-step and operates from 4.5 V to 48 V....
$16.95 AUD, inc GST
$15.41 AUD, exc GST

Available with a lead time
Expect dispatch between Jan 13 and Jan 15

Quantity Discounts:

  • 10-25 $14.79 (exc GST)
  • 25+ $14.33 (exc GST)
- +

0 from local stock, 1 supplier stock; your order will dispatch between Dec 1 to Dec 10. And yes, stock levels and lead times are accurate!

Shipping:

  • $7+ Standard (5+ days*, tracked)
  • $11+ Express (2+ days*, tracked)
  • FREE Pickup (Newcastle only - must order online*)

Shipping costs may increase for heavy products or large orders.

Exact shipping can be calculated on the view cart page.

*Conditions apply, see shipping tab below.

DRV8434/DRV8434A Stepper Motor Driver Carrier, bottom view with dimensions.

This product is a carrier board or breakout board for the DRV8434 stepper motor driver from Texas Instruments (TI); Pololu therefore recommend careful reading of the DRV8434 datasheet before using this product. This stepper motor driver lets you control one bipolar stepper motor at up to approximately 1.2 A continuous per phase without a heat sink or forced air flow (see the Power dissipation considerations section below for more information).

There are several different versions of DRV8434x carriers, and the following comparison table shows their key differences:


DRV8434

DRV8434A

DRV8434S
(Potentiometer for
Max. Current Limit)

DRV8434S
(2A Max. Current
Limit)
Configuration: I/O pins SPI
Control interface: STEP and DIR pins STEP and DIR pins or SPI
Stall detection: Yes Yes
Current limit: Potentiometer
setting (0–2 A)
Potentiometer setting
for max. (0–2 A),
scaled with SPI
setting (%)
2 A fixed max.,
scaled with SPI
setting (%)
Decay modes available: 6 1 8
Available versions:

Features

  • 4.5 V to 48 V supply voltage range (note: these are not recommended for use with 48V batteries, which can be well above nominal when fully charged)
  • Can deliver up to 1.2 A continuous per phase without additional cooling (2 A peak)
  • Built-in regulator (no external logic voltage supply needed)
  • Can interface directly with 1.8 V, 3.3 V and 5 V systems
  • Simple step and direction control interface
  • Eleven different step resolutions: full-step with 100% current, full-step with 70% current, non-circular 1/2-step, 1/2-step, 1/4-step, 1/8-step, 1/16-step, 1/32-step, 1/64-step, 1/128-step, 1/256-step
  • Adjustable current control lets you set the maximum current output, which lets you use voltages above your stepper motor’s rated voltage to achieve higher step rates
  • Six decay modes including two smart tune current regulation modes that help you achieve smooth steps without manual tuning
  • Over-temperature thermal shutdown, over-current protection, open load detection, under-voltage lockout, and charge pump over-voltage protection
  • Driver IC integrates spread spectrum clocking of its internal oscillator and charge pump for reduced EMI
  • 4-layer, 2 oz copper PCB for improved heat dissipation
  • Exposed solderable ground pad below the driver IC on the bottom of the PCB
  • Module size, pinout, and interface match those of Pololu's A4988 stepper motor driver carriers in most respects

This product ships with all surface-mount components—including the DRV8434 driver IC—installed as shown in the product picture.

Pololu also have a variety of other stepper motor driver options in this same form factor with different operating profiles and features.

Some unipolar stepper motors (e.g. those with six or eight leads) can be controlled by this driver as bipolar stepper motors. For more information, please see the frequently asked questions. Unipolar motors with five leads cannot be used with this driver.

Included hardware

The DRV8434 stepper motor driver carrier ships with one 1×16-pin breakaway 0.1" male header. The headers can be soldered in for use with solderless breadboards or 0.1" female connectors. You can also solder your motor leads and other connections directly to the board. For a version of this carrier with header pins already installed, see item #3763.

Using the driver

Minimal wiring diagram for connecting a microcontroller to a DRV8434 stepper motor driver carrier (1/128-step mode, smart tune dynamic decay mode).

Power connections

The driver requires a motor supply voltage of 4.5 V to 48 V to be connected across VIN and GND. This supply should be capable of delivering the expected stepper motor current. Note that supply voltages below 6 V limit the maximum settable current limit; see the Current limiting section for more details.

Motor connections

Four, six, and eight-wire stepper motors can be driven by the DRV8434 if they are properly connected; a FAQ answer explains the proper wirings in detail.

Warning: Connecting or disconnecting a stepper motor while the driver is powered can destroy the driver. (More generally, rewiring anything while it is powered is asking for trouble.)

Step (and microstep) size

Stepper motors typically have a step size specification (e.g. 1.8° or 200 steps per revolution), which applies to full steps. A microstepping driver such as the DRV8434 allows higher resolutions by allowing intermediate step locations, which are achieved by energizing the coils with intermediate current levels. For instance, driving a motor in quarter-step mode will give the 200-step-per-revolution motor 800 microsteps per revolution by using four different current levels.

The resolution (step size) selector inputs (M0 and M1) enable selection from the eleven step resolutions according to the table below. M0 is a tri-level pin and M1 is a quad-level pin; note that the voltage on these pins must be greater than 2.7 V for them to register as logic high. The driver defaults to 1/128 step mode. For the microstep modes to function correctly, the current limit must be set low enough (see below) so that current limiting gets engaged. Otherwise, the intermediate current levels will not be correctly maintained, and the motor will skip microsteps.

M0 M1 Microstep Resolution
Low Low Full step with 100% current
Low 330kO to GND Full step with 71% current
High Low Non-circular 1/2 step
Hi-Z Low 1/2 step
Low High 1/4 step
High High 1/8 step
Hi-Z High 1/16 step
Low Hi-Z 1/32 step
Hi-Z 330kO to GND 1/64 step
Hi-Z Hi-Z 1/128 step
High Hi-Z 1/256 step

Control inputs and status outputs

The rising edge of each pulse to the STEP input corresponds to one microstep of the stepper motor in the direction selected by the DIR pin. These inputs are both pulled low by default. If you just want rotation in a single direction, you can leave DIR disconnected.

The decay inputs (DECAY0 and DECAY1) allow for selection from six current decay modes according to the table below. Both pins are tri-level pins; note that the voltage on these pins must be greater than 2.7 V for them to register as logic high. The driver defaults to smart tune dynamic decay mode. The TOFF pin is used to set the fixed off time for all modes except smart tune ripple control mode, where it instead sets the allowed ripple current. See the datasheet for more details.

DECAY0 DECAY1 Decay Mode for increasing steps Decay Mode for decreasing steps
x Hi-Z Smart tune dynamic decay Smart tune dynamic decay
Low Low Smart tune dynamic decay Smart tune dynamic decay
Low High Smart tune ripple control Smart tune ripple control
High Low Mixed decay: 30% fast Mixed decay: 30% fast
High High Slow decay Mixed decay: 30%fast
Hi-Z Low Mixed decay: 60% fast Mixed decay: 60% fast
Hi-Z High Slow decay Slow decay

The chip has two different inputs for controlling its power states: SLEEP and ENABLE. For details about these power states, see the datasheet. SLEEP (SLP) is internally pulled-low which by default prevents the driver from operating; this pin must be high to enable the driver (it can be connected directly to a logic “high” voltage between 1.8 V and 5 V, or it can be dynamically controlled by connecting it to a digital output of an MCU). A 20 µs pulse on the SLEEP pin clears latched faults without putting the driver to sleep. The default state of the ENABLE (EN) pin is to enable the driver. ENABLE is also used to select whether the overcurrent protection and thermal shutdown operate in latched shutdown or automatic retry mode. See the datasheet for more details.

Schematic of nSLEEP and nFAULT pins on DRV8434/DRV8434A carriers.

The DRV8434 also features an open-drain FAULT output that drives low whenever the driver detects an under-voltage, over-current, open load, stall detection, or thermal shutdown fault. The carrier board connects this pin to the SLEEP pin through a 10 kO resistor that acts as a FAULT pull-up whenever SLEEP is externally held high, so no external pull-up is necessary on the FAULT pin. Note that the carrier includes a 1.5 kO protection resistor in series with the FAULT pin that makes it is safe to connect this pin directly to a logic voltage supply, as might happen if you use this board in a system designed for the pin-compatible A4988 carrier. In such a system, the 10 kO resistor between SLEEP and FAULT would then act as a pull-up for SLEEP, making the DRV8434 carrier more of a direct replacement for the A4988 in such systems (the A4988 has an internal pull-up on its SLEEP pin).

Current limiting

To achieve high step rates, the motor supply is typically higher than would be permissible without active current limiting. For instance, a typical stepper motor might have a maximum current rating of 1 A with a 5 O coil resistance, which would indicate a maximum motor supply of 5 V. Using such a motor with 9 V would allow higher step rates, but the current must actively be limited to under 1 A to prevent damage to the motor.

The DRV8434 supports such active current limiting, and the trimmer potentiometer on the board can be used to set the current limit. You will typically want to set the driver’s current limit to be at or below the current rating of your stepper motor. One way to set the current limit is to put the driver into full-step 100% current mode and to measure the current running through a single motor coil without clocking the STEP input.

Another way to set the current limit is to measure the VREF voltage and calculate the resulting current limit. The VREF pin voltage is accessible via a small hole that is circled on the bottom silkscreen of the circuit board. The current limit in amps relates to the reference voltage in volts as follows:

Current Limit=VREF1.32Current Limit=VREF1.32Current Limit=VREF1.32

or, rearranged to solve for VREF:

VREF=Current Limit1.32VREF=Current Limit·1.32VREF=Current Limit·1.32

So, the current limit in amps (A) is equal to VREF voltage in volts (V) divided by 1.32, and if you have a stepper motor rated for 1 A, for example, you can set the current limit to about 1 A by setting the reference voltage to about 1.32 V.

For input voltages below 6 V the DRV8434’s internally regulated logic voltage VDVDD linearly drops from 5 V with a 6 V input to around 4.35 V with a 4.5 V input. VDVDD supplies the potentiometer circuit used to set the driver’s current limit, so using supply voltages below 6 V reduces the maximum current limit setting possible with the onboard potentiometer. With an input of 4.5 V the maximum settable current limit is 1.75 A.

Note: The coil current can be very different from the power supply current, so you should not use the current measured at the power supply to set the current limit. The appropriate place to put your current meter is in series with one of your stepper motor coils. If the driver is in full-step 100% current or full-step 71% current modes, both coils will always be on and limited to 100% or 71% of the current limit setting, respectively. If your driver is in one of the microstepping modes, the current through the coils will change with each step, ranging from 0% to 100% of the set limit. See the DRV8434 datasheet for more information.

Power dissipation considerations

The DRV8434 carrier has a maximum current rating of 2 A per coil, but the actual current you can deliver depends on how well you can keep the IC cool. The carrier’s printed circuit board is designed to draw heat out of the IC, but to supply more than approximately 1.2 A per coil, a heat sink or other cooling method is required.

This product can get hot enough to burn you long before the chip overheats. Take care when handling this product and other components connected to it.

Please note that measuring the current draw at the power supply will generally not provide an accurate measure of the coil current. Since the input voltage to the driver can be significantly higher than the coil voltage, the measured current on the power supply can be quite a bit lower than the coil current (the driver and coil basically act like a switching step-down power supply). Also, if the supply voltage is very high compared to what the motor needs to achieve the set current, the duty cycle will be very low, which also leads to significant differences between average and RMS currents. Additionally, please note that the coil current is a function of the set current limit, but it does not necessarily equal the current limit setting as the actual current through each coil changes with each microstep.

Schematic diagram

Schematic diagram of the DRV8434 Stepper Motor Driver Carrier.

This schematic is also available as a downloadable pdf (93k pdf).

Key differences between the DRV8434 and A4988

The DRV8434 carrier was designed to be as similar to Pololu's A4988 stepper motor driver carriers as possible, and it can be used as a drop-in replacement for the A4988 carrier in many applications because it shares the same size, pinout, and general control interface. There are a few differences between the two modules that should be noted, however:

DRV8434 Stepper Motor Driver Carrier (top view).

A4988 stepper motor driver carrier, Black Edition (shown with original green 50 mO current sense resistors).

  • The pin used to supply logic voltage to the A4988 is used as the DRV8434 FAULT output, since the DRV8434 does not require a logic supply (and the A4988 does not have a fault output). Note that it is safe to connect the FAULT pin directly to a logic supply (there is a 1.5k resistor between the IC output and the pin to protect it), so the DRV8434 module can be used in systems designed for the A4988 that route logic power to this pin.
  • The SLEEP pin on the DRV8434 is not pulled up by default like it is on the A4988, but the carrier board does connect it to the FAULT pin through a 10k resistor. Therefore, systems intended for the A4988 that route logic power to the FAULT pin will effectively have a 10k pull-up on the SLEEP pin.
  • The DRV8434 has one extra pin (TOFF) located on the bottom edge of the board. Installing a header pin in this location could prevent the carrier from fitting into sockets or boards designed for the A4988.
  • The current limit potentiometer is in a different location.
  • The relationship between the current limit setting and the reference pin voltage is different.
  • The DRV8434 offers several microstep modes that the A4988 does not.
  • The DRV8434 only has two pins for setting its microstep mode; the A4988 has three, and the step selection table differs between the DRV8434 and A4988. On the DRV8434, the M0 and M1 pins must be left in a floating (high-impedance) state or connected through a 330kO to ground to select some of the microstepping modes. The default microstepping mode on the DRV8434 carrier is 1/128-step while the default microstepping mode on the A4988 carrier is full-step.
  • The DRV8434 has no RESET input, but a pulse on its SLEEP pin can be used to reset latched faults.
  • The ENABLE pin on the DRV8434 enables the driver when floating or high and the driver is enabled by default. On the A4988 the ENABLE pin enables the driver when low and is pulled down by the carrier.
  • The DRV8434 allows you to select one of six decay modes rather than just using mixed decay like on Pololu's A4988 carriers.
  • The DRV8434 has a lower minimum supply voltage than the A4988 (4.5 V vs 8.2 V) and a higher maximum supply voltage (48 V vs 35 V), which means the DRV8434 can be used in a wider range of systems, is safer for using higher voltages, and is less susceptible to damage from LC voltage spikes.
  • The DRV8434 uses a different naming convention for the stepper motor outputs. On both boards, the first part of the label identifies the coil (so you have coils “A” and “B” on the DRV8434 and coils “1” and “2” on the A4988). Additionally, the two pairs of motor output pins are swapped, so if a motor is connected to both drivers with its wires in the same order top to bottom, it will turn one way for the DRV8434 and the other for the A4988.

In summary, the DRV8434 carrier is similar enough to Pololu's A4988 carriers that the minimum connection diagram for the A4988 is a valid alternate way to connect the DRV8434 to a microcontroller as well:

Alternative minimal wiring diagram for connecting a microcontroller to a DRV8434 stepper motor driver carrier (1/128-step mode, smart tune dynamic decay mode).

Dimensions

Size: 0.6" × 0.8"
Weight: 1.3 g1

General specifications

Minimum operating voltage: 4.5 V2
Maximum operating voltage: 48 V3
Continuous current per phase: 1.2 A4
Maximum current per phase: 2 A5
Minimum logic voltage: 1.8 V6
Maximum logic voltage: 5.5 V7
Microstep resolutions: full with 100% current, full with 70% current, non-circular 1/2, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256
Current limit control: potentiometer
Reverse voltage protection?: N
Header pins soldered?: N

Identifying markings

PCB dev codes: md43a
Other PCB markings: 0J13721

Notes:

1
Without included optional headers.
2
Inputs below 6 V reduce the maximum settable current limit. With 4.5 V in the maximum settable limit is 1.75 A.
3
Not intended for use with 48V batteries, which can be well above nominal when fully charged.
4
Without a heat sink or forced air flow.
5
With sufficient additional cooling.
6
Logic high threshold varies for two-state, tri-state, and quad-state pins. See datasheet for details.
7
Absolute maximum voltage on any input is 5.75 V.

File downloads

Recommended links

Product Comments

Exact shipping can be calculated on the view cart page (no login required).

Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).

We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):

  • $3+ for Stamped Mail (typically 10+ business days, not tracked, only available on selected small items)
  • $7+ for Standard Post (typically 6+ business days, tracked)
  • $11+ for Express Post (typically 2+ business days, tracked)
  • Pickup - Free! Only available to customers who live in the Newcastle region (must order online and only pickup after we email to notify you the order is ready). Orders placed after 2PM may not be ready until the following business day.

Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.

Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.

International Orders - the following rates are for New Zealand and will vary for other countries:

  • $12+ for Pack and Track (3+ days, tracked)
  • $16+ for Express International (2-5 days, tracked)

If you order lots of gear, the postage amount will increase based on the weight of your order.

Our physical address (here's a PDF which includes other key business details):

Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia

Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.

Have a product question? We're here to help!

Write Your Own Review

Videos

View All

Guides

The Maker Revolution

The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...
The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...

Motor Drivers vs. Motor Controllers

If you’ve ever built a robot with wheels, or any motorised parts really, you’ll have com...
If you’ve ever built a robot with wheels, or any motorised parts really, you’ll have com...

Projects

RGB Light-Up Remote-Control Car

SummaryI made this car and the previous one because at school there was a Lego We-Do tug-of-war com...
SummaryI made this car and the previous one because at school there was a Lego We-Do tug-of-war com...

Pi Zero Motion Sensing Camera

The Pi Zero Motion Sensing Camera is a portable security camera using a Pi Zero 2W, Pi Zero camera,...
The Pi Zero Motion Sensing Camera is a portable security camera using a Pi Zero 2W, Pi Zero camera,...

555 Timer Step Sequencer Synthesiser

If you, like me, have been inhaling so much flux that the bronchioles of your lungs have mutated to...
If you, like me, have been inhaling so much flux that the bronchioles of your lungs have mutated to...
Feedback

Please continue if you would like to leave feedback for any of these topics:

  • Website features/issues
  • Content errors/improvements
  • Missing products/categories
  • Product assignments to categories
  • Search results relevance

For all other inquiries (orders status, stock levels, etc), please contact our support team for quick assistance.

Note: click continue and a draft email will be opened to edit. If you don't have an email client on your device, then send a message via the chat icon on the bottom left of our website.

Makers love reviews as much as you do, please follow this link to review the products you have purchased.