Pololu 5V, 500mA Step-Down Voltage Regulator D24V5F5

Rating:
100% of 100
SKU: POLOLU-2843 Brand: Pololu
The compact (0.4″ × 0.5″) D24V5F5 synchronous buck voltage regulator takes an input voltage of up to 36 V and efficiently reduces it to 5 V while allowing for a maximum output current of 500 mA. This regulator offers typical efficiencies between 85% and 90% and has a very low dropout, so it can be used with input voltages as low as a few hundred millivolts above 5 V. The pins have a 0.1″ spacing, making this board compatible with standard solderless breadboards and perfboards.
$10.05 AUD, inc GST
$9.14 AUD, exc GST

In stock, ships same business day if ordered before 2PM
Delivered by Mon, 1st of Apr

Quantity Discounts:

  • 10-25 $8.86 (exc GST)
  • 25+ $8.68 (exc GST)
- +

6 from local stock, 1 supplier stock; your order will dispatch between Dec 1 to Dec 10. And yes, stock levels and lead times are accurate!

Favourite product

Shipping:

  • $6+ Standard (5+ days*, tracked)
  • $10+ Express (2+ days*, tracked)
  • FREE Pickup (Newcastle only - must order online*)

Shipping costs may increase for heavy products or large orders.

Exact shipping can be calculated on the view cart page.

*Conditions apply, see shipping tab below.

Pololu step-down voltage regulators D24V10Fx and D24V5Fx next to a 7805 voltage regulator in TO-220 package.

The D24V5Fx family of buck (step-down) voltage regulators generates lower output voltages from input voltages as high as 36 V. They are switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters) and have a typical efficiency between 80% to 93%, which is much more efficient than linear voltage regulators, especially when the difference between the input and output voltage is large. These regulators have a power-save mode that activates at light loads and a low quiescent (no load) current draw, which make them well suited for low-power applications that are run from a battery. These regulators are available in eight different fixed output voltages:

Alternatives available with variations in these parameter(s):output voltageSelect variant…

The different versions of this regulator all look very similar, so the bottom silkscreen includes a blank space where you can add your own distinguishing marks or labels. This product page applies to all eight versions of the D24V5Fx family.

The regulators feature short-circuit/over-current protection, and thermal shutdown helps prevent damage from overheating. The boards do not have reverse-voltage protection.

If you need more output current, consider the very similar D24V10Fx family of step-down voltage regulators, which can deliver up to 1 A in several different output voltages:

Alternatives available with variations in these parameter(s):output voltageSelect variant…

The picture on the right shows a 1 A D24V10Fx regulator next to a 0.5 A D24V5Fx regulator and a common 7805 linear regulator in a TO-220 package.

Features

  • Input voltage:
    • 3 V to 36 V for output voltages of 1.8 V and 2.5 V
    • [output voltage + dropout voltage] to 36 V for output voltages of 3.3 V and higher (see below for more information on dropout voltage)
  • Fixed 1.8 V, 2.5 V, 3.3 V, 5 V, 6 V, 9 V, 12 V, or 15 V output (depending on regulator version) with 4% accuracy
  • Maximum output current: 500 mA
  • Typical efficiency of 80% to 93%
  • 500 kHz switching frequency (when not in power-save mode)
  • 200 µA typical no-load quiescent current
  • Over-current and short-circuit protection, over-temperature shutoff
  • Small size: 0.5" × 0.4" × 0.1" (13 mm × 10 mm × 3 mm)

Using the regulator

Connections

The buck regulator has four connections: shutdown (SHDN), input voltage (VIN), ground (GND), and output voltage (VOUT).

The SHDN pin can be driven low (under 0.4 V) to turn off the output and put the board into a low-power state. There is a 100 kO pull-up resistor between the SHDN pin and VIN, so if you want to leave the board permanently enabled, the SHDN pin can be left disconnected. While the SHDN pin is being driven low, the current draw of the regulator is dominated by the current through the pull-up resistor and will be proportional to the input voltage. (At 36 V in it will draw about 360 µA.)

The input voltage, VIN, powers the regulator. Voltages between 3 V and 36 V can be applied to VIN, but for versions of the regulator that have an output voltage higher than 3 V, the effective lower limit of VIN is VOUT plus the regulator’s dropout voltage, which varies approximately linearly with the load (see below for graphs of dropout voltages as a function of the load). Additionally, please be wary of destructive LC spikes (see below for more information).

The output voltage, VOUT, is fixed and depends on the regulator version: the D24V5F1 version outputs 1.5 V, D24V5F2 version outputs 2.5 V, the D24V5F3 version outputs 3.3 V, the D24V5F5 version outputs 5 V, the D24V5F6 version outputs 6 V, the D24V5F9 version outputs 9 V, the D24V5F12 version outputs 12 V, and the D24V5F15 version outputs 15 V

The four connections are labeled on the back side of the PCB and are arranged with a 0.1" spacing along the edge of the board for compatibility with solderless breadboards, connectors, and other prototyping arrangements that use a 0.1" grid. You can solder wires directly to the board or solder in either the 4×1 straight male header strip or the 4×1 right-angle male header strip that is included.

Typical efficiency and output current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. This family of switching regulators typically has an efficiency of 80% to 95%, though the actual efficiency in a given system depends on input voltage, output voltage, and output current. See the efficiency graph near the bottom of this page for more information.

In order to achieve a high efficiency at low loads, this regulator automatically goes into a power-save mode where the switching frequency is reduced. In power-save mode, the switching frequency of the regulator changes as necessary to minimize power loss. This could make it harder to filter out noise on the output caused by switching.

Typical dropout voltage

The dropout voltage of a step-down regulator is the minimum amount by which the input voltage must exceed the regulator’s target output voltage in order to ensure the target output can be achieved. For example, if a 5 V regulator has a 1 V dropout voltage, the input must be at least 6 V to ensure the output is the full 5 V. Generally speaking, the dropout voltage increases as the output current increases. See the “Details” section below for more information on the dropout voltage for this specific regulator version.

Details for item #2843

The graphs below show the typical efficiency and dropout voltage of the 5 V D24V5F5 regulator as a function of the output current:

LC voltage spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s maximum voltage (36 V), the regulator can be destroyed. In Pololu's tests with typical power leads (~30" test clips), input voltages above 20 V caused spikes over 36 V.

If you are connecting more than 20 V or your power leads or supply has high inductance, Pololu recommend soldering a 33 µF or larger electrolytic capacitor close to the regulator between VIN and GND. The capacitor should be rated for at least 50 V.

More information about LC spikes can be found in Pololu's application note, Understanding Destructive LC Voltage Spikes.

People often buy this product together with:

Pololu 3.3V, 500mA Step-Down Voltage Regulator D24V5F3Pololu 3.3V, 500mA Step-Down Voltage Regulator D24V5F3
Pololu 12V, 500mA Step-Down Voltage Regulator D24V5F12Pololu 12V, 500mA Step-Down Voltage Regulator D24V5F12
Pololu 5V, 1A Step-Down Voltage Regulator D24V10F5Pololu 5V, 1A Step-Down Voltage Regulator D24V10F5

Dimensions

Size: 0.4" × 0.5" × 0.1"1
Weight: 0.6 g1

General specifications

Minimum operating voltage: 5.1 V2
Maximum operating voltage: 36 V
Maximum output current: 500 mA
Output voltage: 5 V
Reverse voltage protection?: N
Maximum quiescent current: 0.2 mA3

Identifying markings

PCB dev codes: reg16a
Other PCB markings: 0J7990, blank white box

Notes:

1
Without included optional headers.
2
For small loads; this voltage rises approximately linearly up to 5.6 V at 500 mA output.
3
While enabled (SHDN = HIGH) with no load; while disabled it is proportional to the input voltage (360 µA when the input is 36 V).

File downloads

Product Comments

Exact shipping can be calculated on the view cart page (no login required).

Products that weigh more than 0.5 KG may cost more than what's shown (for example, test equipment, machines, >500mL liquids, etc).

We deliver Australia-wide with these options (depends on the final destination - you can get a quote on the view cart page):

  • $3+ for Stamped Mail (typically 10+ business days, not tracked, only available on selected small items)
  • $6+ for Standard Post (typically 6+ business days, tracked)
  • $10+ for Express Post (typically 2+ business days, tracked)
  • Pickup - Free! Only available to customers who live in the Newcastle region (must order online and only pickup after we email to notify you the order is ready). Orders placed after 2PM may not be ready until the following business day.

Non-metro addresses in WA, NT, SA & TAS can take 2+ days in addition to the above information.

Some batteries (such as LiPo) can't be shipped by Air. During checkout, Express Post and International Methods will not be an option if you have that type of battery in your shopping cart.

International Orders - the following rates are for New Zealand and will vary for other countries:

  • $11+ for Pack and Track (3+ days, tracked)
  • $16+ for Express International (2-5 days, tracked)

If you order lots of gear, the postage amount will increase based on the weight of your order.

Our physical address (here's a PDF which includes other key business details):

Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia

Take a look at our customer service page if you have other questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.

Have a product question? We're here to help!

Write Your Own Review

Videos

View All

Guides

How to Drive High Power LEDs – 3W Aluminum Backed Star LEDs

High power LEDs (Light Emitting Diodes) have different requirements that need to be met when compar...
High power LEDs (Light Emitting Diodes) have different requirements that need to be met when compar...

The Maker Revolution

The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...
The Maker Revolution celebrates the creation of new devices and the modification of existing ones - ...

How to Use DC Regulators/Converters

So, you might have the best project in the world, an amazing idea and design, but no matter how clev...
So, you might have the best project in the world, an amazing idea and design, but no matter how clev...

Powering Portable Projects: Batteries

Want to make your project portable? We've put together a quick guide to get you up to speed on batte...
Want to make your project portable? We've put together a quick guide to get you up to speed on batte...

Projects

mmPi-Pico HAT

I use a Raspberry Pi running EmonCms for collecting sensor data and controlling devices around the ...
I use a Raspberry Pi running EmonCms for collecting sensor data and controlling devices around the ...

Solar Charging Station

The aim of this project was to use the sun to charge some batteries with 1W and 2W Seeed solar ...
The aim of this project was to use the sun to charge some batteries with 1W and 2W Seeed solar ...
Feedback

Please continue if you would like to leave feedback for any of these topics:

  • Website features/issues
  • Content errors/improvements
  • Missing products/categories
  • Product assignments to categories
  • Search results relevance

For all other inquiries (orders status, stock levels, etc), please contact our support team for quick assistance.

Note: click continue and a draft email will be opened to edit. If you don't have an email client on your device, then send a message via the chat icon on the bottom left of our website.

Makers love reviews as much as you do, please follow this link to review the products you have purchased.