
RISC-V External Debug Support

Version 0.13

b4f1f439a57afe04aab61b8b2c42e490f3aaaf58

Tim Newsome <tim@sifive.com>

Thu Jun 8 10:20:07 2017 -0700

Preface

Warning! This draft specification will change before being accepted as standard, so
implementations made to this draft specification will likely not conform to the future
standard.

Acknowledgments

I would like to thank the following people for their time, feedback, and ideas: Bruce Ablei-
dinger, Krste Asanovic, Mark Beal, Alex Bradbury, Zhong-Ho Chen, Monte Dalrymple, Vyacheslav
Dyanchenco, Peter Egold, Richard Herveille, Po-wei Huang, Scott Johnson, Aram Nahidipour,
Gajinder Panesar, Klaus Kruse Pedersen, Antony Pavlov, Ken Pettit, Wesley Terpstra, Megan
Wachs, Stefan Wallentowitz, Ray Van De Walker, Andrew Waterman, and Andy Wright.

i

ii RISC-V External Debug Support Version 0.13

Contents

Preface i

1 Introduction 1

1.1 Terminology . 1

1.2 About This Document . 1

1.2.1 Structure . 1

1.2.2 Register Definition Format . 2

1.3 Background . 2

1.4 Supported Features . 3

2 System Overview 5

3 Debug Module (DM) 7

3.1 Debug Module Interface (DMI) . 7

3.2 Reset Control . 8

3.3 Selecting Harts . 8

3.3.1 Selecting a Single Hart . 8

3.3.2 Selecting Multiple Harts . 9

3.4 Halt Control . 9

3.5 Abstract Commands . 9

3.5.1 Abstract Command Listing . 10

3.6 Program Buffer . 12

iii

iv RISC-V External Debug Support Version 0.13

3.7 System Bus Access . 12

3.8 Quick Access . 14

3.9 Security . 14

3.10 Serial Ports . 14

3.11 Debug Module DMI Registers . 16

4 RISC-V Debug 31

4.1 Debug Mode . 31

4.2 Load-Reserved/Store-Conditional Instructions . 32

4.3 Reset . 32

4.4 Core Debug Registers . 32

4.5 Virtual Debug Registers . 35

5 Trigger Module 37

5.1 Trigger Registers . 37

6 Debug Transport Module (DTM) 45

A JTAG Debug Transport Module 47

A.1 Background . 47

A.2 JTAG Registers . 47

A.3 JTAG Connector . 52

B Hardware Implementations 55

B.1 Abstract Command Based . 55

B.2 Execution Based . 55

C Debugger Implementation 57

C.1 Debug Module Interface Access . 57

C.2 Main Loop . 58

C.3 Halting . 58

RISC-V External Debug Support Version 0.13 v

C.4 Accessing Registers . 58

C.5 Reading Memory . 59

C.6 Writing Memory . 60

C.7 Running . 61

C.8 Single Step . 61

C.9 Handling Exceptions . 62

C.10 Quick Access . 62

D Trace Module 63

D.1 Trace Data Format . 63

D.2 Trace Events . 65

D.3 Synchronization . 66

D.4 Trace Registers . 66

E Future Ideas 69

F Change Log 71

vi RISC-V External Debug Support Version 0.13

List of Figures

2.1 RISC-V Debug System Overview . 6

3.1 Run/Halt Debug State Machine . 13

vii

viii RISC-V External Debug Support Version 0.13

List of Tables

1.1 Register Access Abbreviations . 2

3.1 Debug Module Interface Address Space . 8

3.2 Use of Data Registers . 10

3.3 Abstract Register Numbers . 10

3.4 Debug Module Debug Bus Registers . 15

4.1 Core Debug Registers . 32

4.2 Virtual Core Debug Registers . 35

4.3 Privilege Level Encoding . 35

5.1 Trigger Registers . 38

5.2 Suggested Breakpoint Timings . 40

A.1 JTAG DTM TAP Registers . 48

A.2 JTAG Connector Diagram . 52

A.3 JTAG Connector Pinout . 53

C.1 Memory Read Timeline . 60

D.1 Trace Sequence Header Packets . 64

D.2 Trace Data Events . 65

D.3 Trace Registers . 66

ix

x RISC-V External Debug Support Version 0.13

Chapter 1

Introduction

When a design progresses from simulation to hardware implementation, a user’s control and un-
derstanding of the system’s current state drops dramatically. To help bring up and debug low level
software and hardware, it is critical to have good debugging support built into the hardware. When
a robust OS is running on a core, software can handle many debugging tasks. However, in many
scenarios, hardware support is essential.

This document outlines a standard architecture for external debug support on RISC-V platforms.
This architecture allows a variety of implementations and tradeoffs, which is complementary to
the wide range of RISC-V implementations. At the same time, this specification defines common
interfaces to allow debugging tools and components to target a variety of platforms based on the
RISC-V ISA.

System designers may choose to add additional hardware debug support, but this specification
defines a standard interface for common functionality.

1.1 Terminology

A platform is a single integrated circuit consisting of one or more components. Some components
may be RISC-V cores, while others may have a different function. Typically they will all be
connected to a single system bus. A single RISC-V core contains one or more hardware threads,
called harts.

1.2 About This Document

1.2.1 Structure

This document contains two parts. The main part of the document is the specification, which is
given in the numbered sections. The second part of the document is a set of appendices. The
information in the appendix is intended to clarify and provide examples, but is not part of the

1

2 RISC-V External Debug Support Version 0.13

actual specification.

1.2.2 Register Definition Format

All register definitions in this document follow the format shown in Section 1.2.2. A simple graphic
shows which fields are in the register. The upper and lower bit indices are shown to the top left
and top right of each field. The total number of bits in the field are shown below it.

After the graphic follows a table which for each field lists its name, description, allowed accesses,
and reset value. The allowed accesses are listed in Table 1.1.

Table 1.1: Register Access Abbreviations
R Read-only.

R/W Read/Write.

R/W0 Read/Write. Only writing 0 has an effect.

R/W1 Read/Write. Only writing 1 has an effect.

R/W1C Read/Write. For each bit in the field, writing 1 clears
that bit. Writing 0 has no effect.

W Write-only. When read this field returns 0.

W1 Write-only. Only writing 1 has an effect.

Long Name (shortname, at 0x123)

31 8 7 0

0 field

24 8

Field Description Access Reset

field Description of what this field is used for. R/W 15

1.3 Background

There are several use cases for dedicated debugging hardware, both internal to a CPU core and
with an external connection. This specification defines techniques to support all of the use cases
listed below. Some are optional to allow system designers to make cost vs capability tradeoffs.

• Debugging low-level software in the absence of an OS or other software.

• Debugging issues in the OS itself.

• Bootstrapping a system to test, configure, and program components before there is any
executable code path in the system.

RISC-V External Debug Support Version 0.13 3

• Accessing hardware on the system without a working CPU.

• Accessing custom registers that could be added to aid in hardware debug, system bringup,
etc.

• Writing code and data to memory, e.g. boot code and manufacturing constants.

• Analyzing low-level performance issues using profiling and sampling techniques.

• Providing a general transport for firmware running on a component to communicate with the
outside world.

In addition, even without a hardware debugging interface, architectural support in a RISC-V
CPU can aid software debugging and performance analysis by allowing hardware triggers and
breakpoints. This specification aims to define common resources which can be used for different
cases.

When debugging software, this specification distinguishes between two forms of external debugging.
The first is halt mode debugging, where an external debugger halts some or all components of a
platform and inspects their state while they are in stasis. The debugger can read and/or modify
state, then direct the hardware to execute a single instruction, or continue to run freely.

The second is run mode debugging. In this mode a software debug agent runs on a component
(eg. triggered by a timer interrupt or breakpoint on a RISC-V core) which transfers data to or
from the debugger without halting the component, only briefly interrupting its program flow. This
functionality is essential if the component is controlling some real-time system (like a hard drive)
where long timing delays could lead to physical damage. This requires additional software support
(both on the system as well as on the debugger), and efficient communication channels between the
component and the debugger.

1.4 Supported Features

The debug interface described in this specification supports the following features:

1. RV32, RV64, and future RV128 are all supported.

2. Any hart in the platform can be independently debugged.

3. A debugger can discover almost everything it needs to know itself, without user configuration.

4. An optional extension allows arbitrary instructions to be executed on a halted hart. That
means no new debug functionality is needed when a core has additional or custom instructions
or state, as long as there exist programs that can move that state into GPRs.

5. An implementation can choose to provide register access without halting.

6. An implemenation can choose to provide the ability to automatically halt and resume a hart
without debugger intervention.

4 RISC-V External Debug Support Version 0.13

7. A system bus master can be implemented to allow memory access without involving any hart.

8. Debugging can be supported over multiple transports.

9. Code can be downloaded efficiently.

10. Each hart can be debugged from the very first instruction executed.

11. A RISC-V hart can be halted when a software breakpoint instruction is executed.

12. Hardware can step over any instruction.

13. A RISC-V hart can be halted when a trigger matches the PC, read/write address/data, or
an instruction opcode.

14. Optional serial ports can be used for communication between debugger and monitor, or as a
general protocol between debugger and application.

15. The debugger does not need to know anything about the microarchitecture of the cores it is
debugging.

16. Multiple harts can be halted and resumed simultaneously.

This document does not suggest a strategy or implementation for hardware test, debugging or error
detection techniqes. Scan, BIST, etc. are out of scope of this specification, but this specification
does not intend to limit their use in RISC-V systems.

Chapter 2

System Overview

Figure 2.1 shows the main components of External Debug Support. Blocks shown in dotted lines
are optional.

The user interacts with the Debug Host (eg. laptop), which is running a debugger (eg. gdb). The
debugger communicates with a Debug Translator (eg. OpenOCD, which may include a hardware
driver) to communicate with Debug Transport Hardware (eg. Olimex USB-JTAG adapter). The
Debug Transport Hardware connects the Debug Host to the Platform’s Debug Transport Module
(DTM). The DTM provides access to the Debug Module (DM) using the Debug Module Interface
(DMI).

The DM allows the debugger to halt any hart in the platform. Abstract commands provide access
to GPRs. The optional Program Buffer allows the debugger to execute arbitrary code on the
hart, which allows access to additional hart state. Alternatively, additional abstract commands
can provide access to additional hart state.

Each RISC-V hart may implement a Trigger Module. When trigger conditions are met, harts will
halt spontaneously and inform the debug module that they have halted.

An optional system bus access block allows memory accesses without using a RISC-V hart to
perform the access.

Optional serial port blocks allow the Debug Transport to be re-used as a generic communication
interface.

5

6 RISC-V External Debug Support Version 0.13

Figure 2.1: RISC-V Debug System Overview

Chapter 3

Debug Module (DM)

The Debug Module implements a translation interface between abstract debug operations and their
specific implementation. It might support the following operations:

1. Give the debugger necessary information about the implementation. (Required)

2. Allow any individual hart to be halted and resumed. (Required)

3. Provide status on which harts are halted. (Required)

4. Provide read and write access to a halted hart’s GPRs. (Required)

5. Provide access to a reset signal that allows debugging out of reset.(Required)

6. Provide access to other hart registers. (Optional)

7. Provide an interface to force the hart to execute arbitrary instructions. (Optional)

8. Allow multiple harts to be halted, resumed, and/or reset at the same time. (Optional)

9. Allow system memory accesses. (Optional)

A single DM can debug up to 1024 harts.

3.1 Debug Module Interface (DMI)

The Debug Module is a slave to a bus called the Debug Module Interface (DMI). The master of
the bus is the Debug Transport Module(s). The Debug Module Interface can be a trivial bus with
one master and one slave, or use a more full-featured bus like TileLink or the AMBA Advanced
Peripheral Bus. The details are left to the system designer.

The DMI uses between 7 and 32 address bits. It supports read and write operations, which may
return an error. (Errors are only returned by the optional System Bus Access and Serial Port

7

8 RISC-V External Debug Support Version 0.13

blocks). The bottom of the address space is used for the DM. Extra space can be used for custom
debug devices, other cores, additional DMs, etc.

The Debug Module is controlled via register accesses to its DMI address space.

Table 3.1: Debug Module Interface Address Space
0x00 – 0x3f Registers described in Section 3.11.

0x40 – 0x5f There are 1024 bits here, one for each hart controlled
by this debug module. If the hart is halted, the bit is

1. Otherwise the bit is 0. The bit for hart 0 is the
LSB in the 32-bit word at 0x40. The bit for hart 1023

is the MSB in the 32-bit word at 0x5f.

3.2 Reset Control

The Debug Module controls a global reset signal, ndmreset, which can reset, or hold in reset,
every component in the platform, except for the Debug Module and Debug Transport Modules.
The purpose of this feature is to allow debugging programs from the first instruction executed,
so exactly what is affected by this reset is implementation dependent. The Debug Module’s own
state and registers should only be reset at power-up and while dmactive in dmcontrol is 0. The
halt state of harts should be maintained across system reset provided that dmactive is 1, although
trigger CSRs may be cleared.

Due to clock and power domain crossing issues, it may not be possible to perform arbitrary DMI
accesses across system reset. While ndmreset or any external reset is asserted, the only supported
DM operation is accessing dmcontrol. The behavior of other accesses is undefined.

3.3 Selecting Harts

Up to 1024 harts can be connected to a single DM. The debugger selects a hart, and then subsequent
halt, resume, reset, and debugging commands are specific to that hart.

A debugger can enumerate all the harts attached to the DM by selecting each hart starting from 0
until anynonexistent is 1.

The debugger can discover the mapping between hart indices and mhartid by using the interface
to read mhartid, or by reading the system’s Configuration String.

3.3.1 Selecting a Single Hart

All debug modules must support selecting a single hart. The debugger can select a hart by writing
its index to hartsel. Hart indexes start at 0 and are continuous until the final index.

RISC-V External Debug Support Version 0.13 9

3.3.2 Selecting Multiple Harts

Debug Modules may optionally implement a Hart Array Mask register to allow selecting multiple
harts at once. The debugger can set bits in the hart array mask register using hawindowsel and
hawindow, then apply actions to all selected harts by setting hasel. If this feature is supported,
multiple harts can be halted, resumed, and reset simultaneously.

Only the actions initiated by dmcontrol can apply to multiple harts at once, Abstract Commands
apply only to the hart selected by hartsel.

3.4 Halt Control

The Debug Module can halt harts and allow them to run again using the dmcontrol register. When
a debugger wants to halt a single hart it selects it in hartsel and sets haltreq, then waits for allhalted
to indicate the hart is halted before clearing haltreq to 0. Setting haltreq has no effect on a hart
which is already halted.

To resume, the debugger selects the hart with hartsel, and sets resumereq. This action sets the
hart’s resumeack bit to 0. Once the hart has resumed, it sets its resumeack bit to 1. Thus, the
debugger should wait for allresumeack to indicate the hart has resumed before clearing resumereq
to 0. If a debugger reads allresumeack and allhalted in the same cycle, the hart must have resumed
and then halted again.

When waiting for a hart to resume, a debugger should examine allresumeack, not allrunning
or allhalted, because the hart may immediately halt again due to trigger or step conditions.

Setting resumereq on hart which is running clears resumeack but may cause a hart which halts in
the future to immediately resume. Debuggers should not depend on this behavior and should not
set resumereq for running harts.

To halt or resume multiple harts at the same time, the debugger first sets the hart’s bits in the
hart array mask register, then follows the same procedure but with hasel set to 1. Depending on
the desired operation, the debugger might consider the any* versions of the status instead of all*.

When halt or resume is requested, a hart must respond in less than one second, unless it is unavail-
able. (How this is implemented is not further specified. A few clock cycles will be a more typical
latency).

3.5 Abstract Commands

The DM supports a set of abstract commands, most of which are optional. Depending on the
implementation, the debugger may be able to perform some abstract commands even when the
selected hart is not halted. Debuggers can only determine which abstract commands are supported
by a given hart in a given state by attempting them and then looking at cmderr in abstractcs to
see if they were successful.

10 RISC-V External Debug Support Version 0.13

Debuggers execute abstract commands by writing them to command. Debuggers can determine
whether an abstract command is complete by reading busy in abstractcs. If the command takes
arguments, the debugger must write them to the data registers before writing to command. If a
command returns results, the Debug Module must ensure they are placed in the data registers
before busy is cleared. Which data registers are used for the arguments is described in Table 3.2.
In all cases the least-significant word is placed in the lowest-numbered data register.

Table 3.2: Use of Data Registers
XLEN arg0/return value arg1 arg2

32 data0 data1 data2

64 data0, data1 data2 , data3 data4, data5

128 data0– data3 data4 – data7 data8 – data11

Table 3.3: Abstract Register Numbers
0x0000 – 0x0fff CSRs

0x1000 – 0x101f GPRs

0x1020 – 0x103f Floating point registers

0xc000 – 0xffff Reserved for non-standard extensions and internal use.

3.5.1 Abstract Command Listing

This section describes each of the different abstract commands and how their fields should be
interpreted when they are written to command.

Access Register

This command gives the debugger access to CPU registers and program buffer. It performs the
following sequence of operations:

1. Copy data from the register specified by regno into the arg0 region of data, if write is clear
and transfer is set.

2. Copy data from the arg0 region of data into the register specified by regno, if write is set and
transfer is set.

3. Execute the Program Buffer, if postexec is set.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An
implementation may detect an upcoming failure early, and fail the overall command before it
reaches the step that would cause failure.

Debug Modules must implement this command and must support accessing GPRs when the selected
hart is halted. Debug Modules may optionally support accessing other registers, or accessing
registers when the hart is running.

RISC-V External Debug Support Version 0.13 11

31 24 23 22 20 19

cmdtype 0 size 0

8 1 3 1

18 17 16 15 0

postexec transfer write regno

1 1 1 16

Field Description

cmdtype This is 0 to indicate Access Register Command.

size 2: Access the lowest 32 bits of the register.
3: Access the lowest 64 bits of the register.
4: Access the lowest 128 bits of the register.
If size specifies a size larger than the register’s
actual size, then the access must fail. If a register
is accessible, then reads of size less than or equal
to the register’s actual size must be supported.

postexec When 1, execute the program in the Program
Buffer exactly once after performing the transfer,
if any.

transfer 0: Don’t do the operation specified by write.
1: Do the operation specified by write.

write When transfer is set: 0: Copy data from the spec-
ified register into arg0 portion of data.
1: Copy data from arg0 portion of data into the
specified register.

regno Number of the register to access, as described in
Table 3.3. dpc may be used as an alias for PC if
this command is supported on a non-halted hart.

Quick Access

Perform the following sequence of operations:

1. Halt the hart. If the hart is already halted, the entire command fails.

2. Execute the Program Buffer.

3. Resume the hart. If the hart is already running, the entire command fails.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An
implementation may detect an upcoming failure early, and fail the overall command before it
reaches the step that would cause failure.

Implementing this command is optional.

31 24 23 0

cmdtype 0

8 24

12 RISC-V External Debug Support Version 0.13

Field Description

cmdtype This is 1 to indicate Quick Access command.

Figure 3.1 shows a conceptual view of the states passed through by a hart during run/halt debugging
as influenced by the different fields of dmcontrol, abstractcs, abstractauto, and command.

3.6 Program Buffer

To support executing arbitrary instructions on a halted hart, a Debug Module can include a Pro-
gram Buffer that a debugger can write small programs to. Systems that support all necessary
functionality using abstract commands only may choose to omit the Program Buffer.

A debugger can write a small program to the Program Buffer, and then execute it exactly once
with the Access Register Abstract Command, setting the postexec bit in command. If progsize is
1, the Program Buffer may only hold a single instruction. This can be a 32-bit instruction, or a
compressed instruction in the lower 16 bits accompanied by a compressed nop in the upper 16 bits.
If progsize is greater than 1, the debugger can write whatever program it likes, but the program
must end with ebreak or ebreak.c.

While these programs are executed, the hart does not leave Debug Mode (see Section 4.1). If an
exception is encountered during execution of the Program Buffer, no more instructions are executed,
the hart remains in Debug Mode, and cmderr is set to 3 (exception error).

Executing the Program Buffer may clobber dpc. If that is the case, it must be possible to read/write
dpc using an abstract command with postexec not set. The debugger must attempt to save dpc

between halting and executing a Program Buffer, and then restore dpc before leaving Debug Mode.

Allowing Program Buffer execution to clobber dpc allows for direct implementations that
don’t have a separate PC register, and do need to use the PC when executing the Program
Buffer.

The Program Buffer may be implemented as RAM which is accessible to the hart as RAM memory.
A debugger can determine if this is the case by executing small programs that attempt to write
relative to pc while executing from the Program Buffer. If so, the debugger has more flexibility in
what it can do with the program buffer.

3.7 System Bus Access

When a Program Buffer is present, a debugger can access the system bus by having a RISC-V
hart perform the accesses it requires. A Debug Module may also include a System Bus Access
block to provide memory access without involving a hart, regardless of whether Program Buffer is
implemented. The System Bus Access block uses physical addresses.

Implementing a System Bus Access block has several benefits even when a Debug Module
also implements a Program Buffer. First, it is possible to access memory in a running system

RISC-V External Debug Support Version 0.13 13

Figure 3.1: Run/Halt Debug State Machine. As only a small amount of state is visibile to the
debugger, the states and transitions are conceptual.

14 RISC-V External Debug Support Version 0.13

with minimal impact. Second, it may improve performance when accessing memory. Third, it
may provide access to devices that a hart does not have access to.

3.8 Quick Access

Depending on the task it is performing, some harts can only be halted very briefly. There are
several mechanisms that allow accessing resources in such a running system with a minimal impact
on the running hart.

First, an implementation may allow some abstract commands to execute without halting the hart.

Second, the Quick Access abstract command can be used to halt a hart, quickly execute the contents
of the Program Buffer, and let the hart run again. Combined with instructions that allow Program
Buffer code to access the data registers, as described in 3.11, this can be used to quickly perform
a memory or register access. For some systems this will be too intrusive, but many systems that
can’t be halted can bear an occasional hiccup of a hundred or less cycles.

Third, if the System Bus Access block is implemented, it can be used while a hart is running to
access system memory.

3.9 Security

To protect intellectual property it may be desirable to lock access to the Debug Module. To allow
access during a manufacturing process and not afterwards, a reasonable solution could be to add a
fuse bit to the Debug Module that can be used to be permanently disable it. Since this is technology
specific, it is not further addressed in this spec.

Another option is to allow the DM to be unlocked only by users who have an access key. A few bits
in dmstatus and authdata can support an arbitrarily complex authentication mechanism. When
authenticated is clear, the DM must not interact with the rest of the platform in any way.

3.10 Serial Ports

The Debug Module may implement up to 8 serial ports. They support basic flow control and full
duplex data transfer between a component and the debugger, essentially allowing the Debug Trans-
port to be used to communicate with a debug monitor running on a hart, or more generally emulate
devices which aren’t present. All these uses require software support, and are not further specified
here. Only the DMI side of the Debug Module serial registers are defined in this specification as
the core side interface should look like a peripheral device.

RISC-V External Debug Support Version 0.13 15

Table 3.4: Debug Module Debug Bus Registers
Address Name Page

0x04 Abstract Data 0 23
0x0f Abstract Data 11
0x10 Debug Module Control 17
0x11 Debug Module Status 16
0x12 Hart Info 19
0x13 Halt Summary 19
0x14 Hart Array Window Select 20
0x15 Hart Array Window 20
0x16 Abstract Control and Status 21
0x17 Abstract Command 22
0x18 Abstract Command Autoexec 22
0x19 Configuration String Addr 0 23
0x1a Config String Addr 1
0x1b Config String Addr 2
0x1c Config String Addr 3
0x20 Program Buffer 0 23
0x2f Program Buffer 15
0x30 Authentication Data 24
0x34 Serial Control and Status 24
0x35 Serial TX Data 25
0x36 Serial RX Data 25
0x38 System Bus Access Control and Status 25
0x39 System Bus Address 31:0 27
0x3a System Bus Address 63:32 27
0x3b System Bus Address 95:64 27
0x3c System Bus Data 31:0 28
0x3d System Bus Data 63:32 28
0x3e System Bus Data 95:64 29
0x3f System Bus Data 127:96 29

16 RISC-V External Debug Support Version 0.13

3.11 Debug Module DMI Registers

Debug Module Status (dmstatus, at 0x11)

The address of this register will not change in the future, because it contains version. It has changed
from version 0.11 of this spec.

This register reports status for the overall debug module as well as the currently selected harts, as
defined in hasel.

31 18 17 16 15 14 13

0 allresumeack anyresumeack allnonexistent anynonexistent allunavail

14 1 1 1 1 1

12 11 10 9 8 7

anyunavail allrunning anyrunning allhalted anyhalted authenticated

1 1 1 1 1 1

6 5 4 3 0

authbusy 0 cfgstrvalid version

1 1 1 4

Field Description Access Reset

allresumeack This field is 1 when all currently selected harts
have acknowledged the previous resumereq.

R -

anyresumeack This field is 1 when any currently selected hart
has acknowledged the previous resumereq.

R -

allnonexistent This field is 1 when all currently selected harts do
not exist in this system.

R -

anynonexistent This field is 1 when any currently selected hart
does not exist in this system.

R -

allunavail This field is 1 when all currently selected harts
are unavailable.

R -

anyunavail This field is 1 when any currently selected hart is
unavailable.

R -

allrunning This field is 1 when all currently selected harts
are running.

R -

anyrunning This field is 1 when any currently selected hart is
running.

R -

allhalted This field is 1 when all currently selected harts
are halted.

R -

anyhalted This field is 1 when any currently selected hart is
halted.

R -

Continued on next page

RISC-V External Debug Support Version 0.13 17

authenticated 0 when authentication is required before using the
DM. 1 when the authentication check has passed.
On components that don’t implement authentica-
tion, this bit must be preset as 1.

R Preset

authbusy 0: The authentication module is ready to process
the next read/write to authdata.
1: The authentication module is busy. Accessing
authdata results in unspecified behavior.
authbusy only becomes set in immediate response
to an access to authdata.

R 0

version 0: There is no Debug Module present.
1: There is a Debug Module and it conforms to
version 0.11 of this specification.
2: There is a Debug Module and it conforms to
version 0.13 of this specification.

R 2

Debug Module Control (dmcontrol, at 0x10)

This register controls the overall debug module as well as the currently selected harts, as defined
in hasel.

31 30 29 28 27 26

haltreq resumereq hartreset 0 hasel

1 1 1 2 1

25 16 15 2 1 0

hartsel 0 ndmreset dmactive

10 14 1 1

Field Description Access Reset

haltreq Halt request signal for all currently selected harts.
When set to 1, each selected hart will halt if it is
not currently halted.
Writing 1 or 0 has no effect on a hart which is
already halted, but the bit should be cleared to 0
before the hart is resumed. Setting both haltreq
and resumereq leads to undefined behavior.
Writes apply to the new value of hartsel and hasel.

R/W 0

Continued on next page

18 RISC-V External Debug Support Version 0.13

resumereq Resume request signal for all currently selected
harts. When set to 1, each selected hart will re-
sume if it is currently halted. Setting both haltreq
and resumereq leads to undefined behavior.
Writes apply to the new value of hartsel and hasel.

R/W 0

hartreset This optional bit controls reset to all the currently
selected harts. To perform a reset the debugger
writes 1, and then writes 0 to deassert the reset
signal.
If this feature is not implemented, the bit always
stays 0, so after writing 1 the debugger can read
the register back to see if the feature is supported.
Writes apply to the new value of hartsel and hasel.

R/W 0

hasel Selects the definition of currently selected harts.
0: There is a single currently selected hart, that
selected by hartsel.
1: There may be multiple currently selected harts
– that selected by hartsel, plus those selected by
the hart array mask register.
An implementation which does not implement the
hart array mask register should tie this field to 0.
A debugger which wishes to use the hart array
mask register feature should set this bit and read
back to see if the functionality is supported.

R/W 0

hartsel The DM-specific index of the hart to select. This
hart is always part of the currently selected harts.

R/W 0

ndmreset This bit controls the reset signal from the DM
to the rest of the system. To perform a system
reset the debugger writes 1, and then writes 0 to
deassert the reset. This bit must not reset the
Debug Module registers. What it does reset is
platform-specific (it may reset nothing).

R/W 0

dmactive This bit serves as a reset signal for the Debug
Module itself.
0: The module’s state, including authentication
mechanism, takes its reset values (the dmactive bit
is the only bit which can be written to something
other than its reset value).
1: The module functions normally.
No other mechanism should exist that may result
in resetting the Debug Module after power up,
including the platform’s system reset or Debug
Transport reset signals.
A debugger may pulse this bit low to get the de-
bug module into a known state.
Implementations may use this bit to aid debug-
ging, for example by preventing the Debug Mod-
ule from being power gated while debugging is
active.

R/W 0

RISC-V External Debug Support Version 0.13 19

Hart Info (hartinfo, at 0x12)

This register gives information about the hart currently selected by hartsel.

This register is optional. If it is not present it should read all-zero.

If this register is included, the debugger can do more with the Program Buffer by writing programs
which explicitly access the data and/or dscratch registers.

31 24 23 20 19 17 16 15 12 11 0

0 nscratch 0 dataaccess datasize dataaddr

8 4 3 1 4 12

Field Description Access Reset

nscratch Number of dscratch registers available for the
debugger to use during program buffer execution,
starting from dscratch0. The debugger can make
no assumptions about the contents of these regis-
ters between commands.

R Preset

dataaccess 0: The data registers are shadowed in the hart by
CSR registers. Each CSR register is XLEN bits
in size, and corresponds to a single argument, per
Table 3.2.
1: The data registers are shadowed in the hart’s
memory map. Each register takes up 4 bytes in
the memory map.

R Preset

datasize If dataaccess is 0: Number of CSR registers dedi-
cated to shadowing the data registers.
If dataaccess is 1: Number of 32-bit words in the
memory map dedicated to shadowing the data

registers.

R Preset

dataaddr If dataaccess is 0: The number of the first CSR
dedicated to shadowing the data registers.
If dataaccess is 1: Signed address of RAM where
the data registers are shadowed.

R Preset

Halt Summary (haltsum, at 0x13)

This register contains a summary of which harts are halted.

Each bit contains the logical OR of 32 halt bits. When there are a large number of harts in the
system, the debugger can first read this register, and then read from the halt region (0x40–0x5f)
to determine which hart is the one that is halted.

31 30 29 28 27 26

halt1023:992 halt991:960 halt959:928 halt927:896 halt895:864 halt863:832

1 1 1 1 1 1

20 RISC-V External Debug Support Version 0.13

25 24 23 22 21 20

halt831:800 halt799:768 halt767:736 halt735:704 halt703:672 halt671:640

1 1 1 1 1 1

19 18 17 16 15 14

halt639:608 halt607:576 halt575:544 halt543:512 halt511:480 halt479:448

1 1 1 1 1 1

13 12 11 10 9 8

halt447:416 halt415:384 halt383:352 halt351:320 halt319:288 halt287:256

1 1 1 1 1 1

7 6 5 4 3 2

halt255:224 halt223:192 halt191:160 halt159:128 halt127:96 halt95:64

1 1 1 1 1 1

1 0

halt63:32 halt31:0

1 1

Hart Array Window Select (hawindowsel, at 0x14)

This register selects which of the 32-bit portion of the hart array mask register is accessible in
hawindow.

The hart array mask register provides a mask of all harts controlled by the debug module. A hart
is part of the currently selected harts if the corresponding bit is set in the hart array mask register
and hasel in dmcontrol is 1, or if the hart is selected by hartsel.

31 5 4 0

0 hawindowsel

27 5

Hart Array Window (hawindow, at 0x15)

This register provides R/W access to a 32-bit portion of the hart array mask register. The position
of the window is determined by hawindowsel.

31 0

maskdata

32

Abstract Control and Status (abstractcs, at 0x16)

31 29 28 24 23 13 12 11 10 8 7 5 4 0

0 progsize 0 busy 0 cmderr 0 datacount

3 5 11 1 1 3 3 5

RISC-V External Debug Support Version 0.13 21

Field Description Access Reset

progsize Size of the Program Buffer, in 32-bit words. Valid
sizes are 0 - 16.
TODO: Explain what can be done with each size
of the buffer, to suggest why you would want more
or less words.

R Preset

busy 1: An abstract command is currently being exe-
cuted.
This bit is set as soon as command is written, and
is not cleared until that command has completed.

R 0

cmderr Gets set if an abstract command fails. The bits in
this field remain set until they are cleared by writ-
ing 1 to them. No abstract command is started
until the value is reset to 0.
0 (none): No error.
1 (busy): An abstract command was executing
while command, abstractcs, abstractauto was
written, or when one of the data or progbuf reg-
isters was read or written.
2 (not supported): The requested command is
not supported. A command that is not supported
while the hart is running may be supported when
it is halted.
3 (exception): An exception occurred while ex-
ecuting the command (eg. while executing the
Program Buffer).
4 (halt/resume): An abstract command couldn’t
execute because the hart wasn’t in the expected
state (running/halted).
7 (other): The command failed for another rea-
son.

R/W1C 0

Continued on next page

22 RISC-V External Debug Support Version 0.13

datacount Number of data registers that are implemented
as part of the abstract command interface. Valid
sizes are 0 - 12.

R Preset

Abstract Command (command, at 0x17)

Writes to this register cause the corresponding abstract command to be executed.

Writing while an abstract command is executing causes cmderr to be set.

If cmderr is non-zero, writes to this register are ignored.

cmderr inhibits starting a new command to accommodate debuggers that, for performance
reasons, send several commands to be executed in a row without checking cmderr in between.
They can safely do so and check cmderr at the end without worrying that one command failed
but then a later command (which might have depended on the previous one succeeding) passed.

31 24 23 0

cmdtype control

8 24

Field Description Access Reset

cmdtype The type determines the overall functionality of
this abstract command.

W 0

control This field is interpreted in a command-specific
manner, described for each abstract command.

W 0

Abstract Command Autoexec (abstractauto, at 0x18)

This register is optional. Including it allows more efficient burst accesses. Debugger can attempt
to set bits and read them back to determine if the functionality is supported.

31 16 15 12 11 0

autoexecprogbuf 0 autoexecdata

16 4 12

Field Description Access Reset

autoexecprogbuf When a bit in this field is 1, read or write ac-
cesses the corresponding progbuf word cause the
command in command to be executed again.

R/W 0

Continued on next page

RISC-V External Debug Support Version 0.13 23

autoexecdata When a bit in this field is 1, read or write accesses
the corresponding data word cause the command
in command to be executed again.

R/W 0

Configuration String Addr 0 (cfgstraddr0, at 0x19)

The Configuration String is described in the RISC-V Priviledged Specification. When cfgstrvalid

is set, reading this register returns bits 31:0 of the configuration string address. Reading the other
cfgstraddr registers returns the upper bits of the address.

When system bus mastering is implemented, this should be the address that should be used with
the System Bus Access module. Otherwise, this should be the address that should be used to access
the config string when hartsel =0.

If cfgstrvalid is 0, then the cfgstraddr registers hold identifier information which is not further
specified in this document.

31 0

addr

32

Abstract Data 0 (data0, at 0x04)

Basic read/write registers that may be read or changed by abstract commands.

Accessing them while an abstract command is executing causes cmderr to be set.

Attempts to write them while busy is set does not change their value.

The values in these registers may not be preserved after an abstract command is executed. The
only guarantees on their contents are the ones offered by the command in question. If the command
fails, no assumptions can be made about the contents of these registers.

31 0

data

32

Program Buffer 0 (progbuf0, at 0x20)

The progbuf registers provide read/write access to the optional program buffer.

Accessing them while an abstract command is executing causes cmderr to be set.

Attempts to write them while busy is set does not change their value.

24 RISC-V External Debug Support Version 0.13

31 0

data

32

Authentication Data (authdata, at 0x30)

This register serves as a 32-bit serial port to the authentication module.

When authbusy is clear, the debugger can communicate with the authentication module by reading
or writing this register. There is no separate mechanism to signal overflow/underflow.

31 0

data

32

Serial Control and Status (sercs, at 0x34)

If serialcount is 0, this register is not present.

31 28 27 26 24 23 22 21 20 19 18

serialcount 0 serial error7 valid7 full7 error6 valid6 full6

4 1 3 1 1 1 1 1 1

17 16 15 14 13 12 11 10 9

error5 valid5 full5 error4 valid4 full4 error3 valid3 full3

1 1 1 1 1 1 1 1 1

8 7 6 5 4 3 2 1 0

error2 valid2 full2 error1 valid1 full1 error0 valid0 full0

1 1 1 1 1 1 1 1 1

Field Description Access Reset

serialcount Number of supported serial ports. R Preset

serial Select which serial port is accessed by serrx and
sertx.

R/W 0

error0 1 when the debugger-to-core queue for serial port
0 has over or underflowed. This bit will remain
set until it is reset by writing 1 to this bit.

R/W1C 0

valid0 1 when the core-to-debugger queue for serial port
0 is not empty.

R 0

full0 1 when the debugger-to-core queue for serial port
0 is full.

R 0

Serial TX Data (sertx, at 0x35)

If serialcount is 0, this register is not present.

RISC-V External Debug Support Version 0.13 25

This register provides access to the write data queue of the serial port selected by serial in sercs.

If the error bit is not set and the queue is not full, a write to this register adds the written data
to the core-to-debugger queue. Otherwise the error bit is set and the write returns error.

A read to this register returns the last data written.

31 0

data

32

Serial RX Data (serrx, at 0x36)

If serialcount is 0, this register is not present.

This register provides access to the read data queues of the serial port selected by serial in sercs.

If the error bit is not set and the queue is not empty, a read from this register reads the oldest
entry in the debugger-to-core queue, and removes that entry from the queue. Otherwise the error

bit is set and the read returns error.

31 0

data

32

System Bus Access Control and Status (sbcs, at 0x38)

31 21 20 19 17 16 15 14 12

0 sbsingleread sbaccess sbautoincrement sbautoread sberror

11 1 3 1 1 3

11 5 4 3 2 1 0

sbasize sbaccess128 sbaccess64 sbaccess32 sbaccess16 sbaccess8

7 1 1 1 1 1

26 RISC-V External Debug Support Version 0.13

Field Description Access Reset

sbsingleread When a 1 is written here, triggers a read at the
address in sbaddress using the access size set by
sbaccess.

W1 0

sbaccess Select the access size to use for system bus ac-
cesses triggered by writes to the sbaddress reg-
isters or sbdata0.
0: 8-bit
1: 16-bit
2: 32-bit
3: 64-bit
4: 128-bit
If an unsupported system bus access size is writ-
ten here, the DM may not perform the access, or
may perform the access with any access size.

R/W 2

sbautoincrement When 1, the internal address value (used by the
system bus master) is incremented by the access
size (in bytes) selected in sbaccess after every sys-
tem bus access.

R/W 0

sbautoread When 1, every read from sbdata0 automatically
triggers a system bus read at the new address.

R/W 0

sberror When the debug module’s system bus master
causes a bus error, this field gets set. The bits
in this field remain set until they are cleared by
writing 1 to them. While this field is non-zero, no
more system bus accesses can be initiated by the
debug module.
0: There was no bus error.
1: There was a timeout.
2: A bad address was accessed.
3: There was some other error (eg. alignment).
4: The system bus master was busy when one of
the sbaddress or sbdata registers was written,
or the sbdata register was read when it had stale
data.

R/W1C 0

Continued on next page

RISC-V External Debug Support Version 0.13 27

sbasize Width of system bus addresses in bits. (0 indi-
cates there is no bus access support.)

R Preset

sbaccess128 1 when 128-bit system bus accesses are supported. R Preset

sbaccess64 1 when 64-bit system bus accesses are supported. R Preset

sbaccess32 1 when 32-bit system bus accesses are supported. R Preset

sbaccess16 1 when 16-bit system bus accesses are supported. R Preset

sbaccess8 1 when 8-bit system bus accesses are supported. R Preset

System Bus Address 31:0 (sbaddress0, at 0x39)

If sbasize is 0, then this register is not present.

When the system bus master is busy, writes to this register will return error and sberror is set.

If sberror is 0 and sbautoread is set then the system bus master will start to read after updating the
address from address. The access size is controlled by sbaccess in sbcs.

If sbsingleread is set, the bit is cleared.

31 0

address

32

Field Description Access Reset

address Accesses bits 31:0 of the internal address. R/W 0

System Bus Address 63:32 (sbaddress1, at 0x3a)

31 0

address

32

Field Description Access Reset

address Accesses bits 63:32 of the internal address (if the
system address bus is that wide).

R/W 0

System Bus Address 95:64 (sbaddress2, at 0x3b)

If sbasize is less than 65, then this register is not present.

31 0

address

32

28 RISC-V External Debug Support Version 0.13

Field Description Access Reset

address Accesses bits 95:64 of the internal address (if the
system address bus is that wide).

R/W 0

System Bus Data 31:0 (sbdata0, at 0x3c)

If all of the sbaccess bits in sbcs are 0, then this register is not present.

If sberror isn’t 0 then accesses return error, and don’t do anything else.

Writes to this register:

1. If the bus master is busy then accesses set sberror, return error, and don’t do anything else.

2. Update internal data.

3. Start a bus write of the internal data to the internal address.

4. If sbautoincrement is set, increment the internal address.

Reads from this register:

1. If bits 31:0 of the internal data register haven’t been updated since the last time this register
was read, then set sberror, return error, and don’t do anything else.

2. “Return” the data.

3. If sbautoincrement is set, increment the internal address.

4. If sbautoread is set, start another system bus read.

31 0

data

32

Field Description Access Reset

data Accesses bits 31:0 of the internal data. R/W 0

System Bus Data 63:32 (sbdata1, at 0x3d)

If sbaccess64 and sbaccess128 are 0, then this register is not present.

31 0

data

32

RISC-V External Debug Support Version 0.13 29

Field Description Access Reset

data Accesses bits 63:32 of the internal data (if the
system bus is that wide).

R/W 0

System Bus Data 95:64 (sbdata2, at 0x3e)

This register only exists if sbaccess128 is 1.

31 0

data

32

Field Description Access Reset

data Accesses bits 95:64 of the internal data (if the
system bus is that wide).

R/W 0

System Bus Data 127:96 (sbdata3, at 0x3f)

This register only exists if sbaccess128 is 1.

31 0

data

32

Field Description Access Reset

data Accesses bits 127:96 of the internal data (if the
system bus is that wide).

R/W 0

30 RISC-V External Debug Support Version 0.13

Chapter 4

RISC-V Debug

Modifications to the RISC-V core to support debug are kept to a minimum. There is a special
execution mode (Debug Mode) and a few extra CSRs. The DM takes care of the rest.

4.1 Debug Mode

Debug Mode is a special processor mode used only when the core is halted for external debugging.
How Debug Mode is entered is implementation-specific.

When executing code from the Program Buffer, the processor stays in Debug Mode and the following
apply:

1. All operations happen in machine mode.

2. mprv in mstatus is ignored.

3. All interrupts are masked.

4. Exceptions don’t update any registers. That includes cause, epc, badaddr, dpc, and mstatus.
They do end execution of the Program Buffer.

5. No action is taken if a trigger matches.

6. Trace is disabled.

7. Counters may be stopped, depending on stopcount in dcsr.

8. Timers may be stopped, depending on stoptime in dcsr.

9. The wfi instruction acts as a nop.

10. Almost all instructions that change the privilege level have undefined behavior. This includes
ecall, mret, hret, sret, and uret. (To change the privilege level, the debugger can write
prv in dcsr). The only exception is ebreak. When that is executed in Debug Mode, it halts
the processor again but without updating dpc or dcsr.

31

32 RISC-V External Debug Support Version 0.13

4.2 Load-Reserved/Store-Conditional Instructions

The reservation registered by an lr instruction on a memory address may be lost when entering
Debug Mode or while in Debug Mode. This means that there may be no forward progress if Debug
Mode is entered between lr and sc pairs.

4.3 Reset

If the halt signal is asserted when a core comes out of reset, the core must enter Debug Mode before
executing any instructions, but after performing any initialization that would usually happen before
the first instruction is executed.

4.4 Core Debug Registers

The supported Core Debug Registers must be implemented for each hart that can be debugged.

These registers are only accessible from Debug Mode.

Table 4.1: Core Debug Registers
Address Name Page

0x7b0 Debug Control and Status 32
0x7b1 Debug PC 34
0x7b2 Debug Scratch Register 0
0x7b3 Debug Scratch Register 1

Debug Control and Status (dcsr, at 0x7b0)

31 28 27 16 15 14 13 12 11

xdebugver 0 ebreakm ebreakh ebreaks ebreaku 0

4 12 1 1 1 1 1

10 9 8 6 5 3 2 1 0

stopcount stoptime cause 0 step prv

1 1 3 3 1 2

Field Description Access Reset

xdebugver 0: There is no external debug support.
4: External debug support exists as it is described
in this document.

R Preset

Continued on next page

RISC-V External Debug Support Version 0.13 33

ebreakm When 1, ebreak instructions in Machine Mode
enter Debug Mode.

R/W 0

ebreakh When 1, ebreak instructions in Hypervisor Mode
enter Debug Mode.

R/W 0

ebreaks When 1, ebreak instructions in Supervisor Mode
enter Debug Mode.

R/W 0

ebreaku When 1, ebreak instructions in User/Application
Mode enter Debug Mode.

R/W 0

stopcount 0: Increment counters as usual.
1: Don’t increment any counters while in De-
bug Mode. This includes the cycle and instret

CSRs. This is preferred for most debugging sce-
narios.
An implementation may choose not to support
writing to this bit. The debugger must read back
the value it writes to check whether the feature is
supported.

R/W Preset

stoptime 0: Increment timers as usual.
1: Don’t increment any hart-local timers while in
Debug Mode.
An implementation may choose not to support
writing to this bit. The debugger must read back
the value it writes to check whether the feature is
supported.

R/W Preset

cause Explains why Debug Mode was entered.
When there are multiple reasons to enter Debug
Mode in a single cycle, the cause with the highest
priority is the one written.
1: An ebreak instruction was executed. (priority
3)
2: The Trigger Module caused a halt. (priority 4)
3: haltreq was set. (priority 2)
4: The hart single stepped because step was set.
(priority 1)
Other values are reserved for future use.

R 0

Continued on next page

34 RISC-V External Debug Support Version 0.13

step When set and not in Debug Mode, the hart will
only execute a single instruction and then enter
Debug Mode. Interrupts are disabled when this
bit is set. If the instruction does not complete due
to an exception, the hart will immediately enter
Debug Mode before executing the trap handler,
with appropriate exception registers set.

R/W 0

prv Contains the privilege level the hart was operating
in when Debug Mode was entered. The encoding
is described in Table 4.3. A debugger can change
this value to change the hart’s privilege level when
exiting Debug Mode.
Not all privilege levels are supported on all harts.
If the encoding written is not supported or the
debugger is not allowed to change to it, the hart
may change to any supported privilege level.

R/W 0

Debug PC (dpc, at 0x7b1)

Upon entry to debug mode, dpc is written with the virtual address of the instruction that encoun-
tered the exception.

When resuming, the hart’s PC is updated to the virtual address stored in dpc. A debugger may
write dpc to change where the hart resumes.

XLEN-1 0

dpc

XLEN

Debug Scratch Register 0 (dscratch0, at 0x7b2)

Optional scratch register that can be used by implementations that need it. A debugger must
not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this
register internally).

Debug Scratch Register 1 (dscratch1, at 0x7b3)

Optional scratch register that can be used by implementations that need it. A debugger must
not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this
register internally).

RISC-V External Debug Support Version 0.13 35

4.5 Virtual Debug Registers

Virtual debug registers are a requirement on the debugger SW/interface, not on the Core designer.

Users of the debugger shouldn’t need to know about the core debug registers, but may want to
change things affected by them. A virtual register is one that doesn’t exist directly in the hardware,
but that the debugger exposes as if it does.

Table 4.2: Virtual Core Debug Registers
Address Name Page

virtual Privilege Level 35

Privilege Level (priv, at virtual)

User can read this register to inspect the privilege level that the hart was running in when the hart
halted. User can write this register to change the privilege level that the hart will run in when it
resumes.

1 0

prv

2

Field Description Access Reset

prv Contains the privilege level the hart was operating
in when Debug Mode was entered. The encoding
is described in Table 4.3. A user can write this
value to change the hart’s privilege level when ex-
iting Debug Mode.

R/W 0

Table 4.3: Privilege Level Encoding
Encoding Privilege Level

0 User/Application
1 Supervisor
2 Hypervisor
3 Machine

36 RISC-V External Debug Support Version 0.13

Chapter 5

Trigger Module

Triggers can cause a breakpoint exception, entry into Debug Mode, or a trace action without having
to execute a special instruction. This makes them invaluable when debugging code from ROM.
They can trigger on execution of instructions at a given memory address, or on the address/data in
loads/stores. These are all features that can be useful without having the Debug Module present,
so the Trigger Module is broken out as a separate piece that can be implemented separately.

Each trigger may support a variety of features. A debugger can build a list of all triggers and their
features as follows:

1. Write 0 to tselect.

2. Read back tselect to confirm this trigger exists. If not, exit.

3. Read tdata1, and possible tdata2 and tdata3 depending on the trigger type.

4. If type is 0, this trigger doesn’t exist. Exit the loop.

5. Repeat, incrementing the value in tselect.

There are two ways to check whether a given trigger is the last one to support these imple-
mentations:

1. When no hardware triggers are implemented at all, all related registers return 0. The
algorithm above terminates when checking type.

2. When 2 triggers are implemented, tselect is just a single bit that selects one of the two.
When the debugger writes 2, it reads back as 0 which terminates the enumeration.

5.1 Trigger Registers

The trigger registers are only accessible in machine and Debug Mode to prevent untrusted user
code from causing entry into Debug Mode without the OS’s permission.

37

38 RISC-V External Debug Support Version 0.13

Table 5.1: Trigger Registers
Address Name Page

0x7a0 Trigger Select 38
0x7a1 Trigger Data 1 38
0x7a1 Match Control 39
0x7a1 Instruction Count 43
0x7a2 Trigger Data 2 39
0x7a3 Trigger Data 3 39

Trigger Select (tselect, at 0x7a0)

This register determines which trigger is accessible through the other trigger registers. The set of
accessible triggers must start at 0, and be contiguous.

Writes of values greater than or equal to the number of supported triggers may result in a different
value in this register than what was written. Debuggers should read back the value to confirm that
what they wrote was a valid index.

Since triggers can be used both by Debug Mode and M Mode, the debugger must restore this
register if it modifies it.

XLEN-1 0

index

XLEN

Trigger Data 1 (tdata1, at 0x7a1)

XLEN-1 XLEN-4 XLEN-5 XLEN-6 0

type hmode data

4 1 XLEN - 5

RISC-V External Debug Support Version 0.13 39

Field Description Access Reset

type 0: There is no trigger at this tselect.
1: The trigger is a legacy SiFive address match
trigger. These should not be implemented and
aren’t further documented here.
2: The trigger is an address/data match trig-
ger. The remaining bits in this register act as
described in mcontrol.
3: The trigger is an instruction count trigger. The
remaining bits in this register act as described in
icount.
15: This trigger exists (so enumeration shouldn’t
terminate), but is not currently available.
Other values are reserved for future use.

R Preset

hmode 0: Both Debug and M Mode can write the tdata

registers at the selected tselect.
1: Only Debug Mode can write the tdata regis-
ters at the selected tselect. Writes from other
modes are ignored.
This bit is only writable from Debug Mode.

R/W 0

data Trigger-specific data. R/W Preset

Trigger Data 2 (tdata2, at 0x7a2)

Trigger-specific data.

XLEN-1 0

data

XLEN

Trigger Data 3 (tdata3, at 0x7a3)

Trigger-specific data.

XLEN-1 0

data

XLEN

Match Control (mcontrol, at 0x7a1)

This register is accessible as tdata1 when type is 2.

Writing unsupported values to any field in this register results in the reset value being written
instead. When a debugger wants to use a feature, it must write the appropriate value and then
read back the register to determine whether it is supported.

40 RISC-V External Debug Support Version 0.13

Address and data trigger implementation are heavily dependent on how the processor core is imple-
mented. To accommodate various implementations, execute, load, and store address/data triggers
may fire at whatever point in time is most convenient for the implementation. The debugger
may request specific timings as described in timing. Table 5.2 suggests timings for the best user
experience.

Table 5.2: Suggested Breakpoint Timings
Match Type Suggested Trigger Timing

Execute Address Before
Execute Instruction Before

Execute Address+Instruction Before
Load Address Before

Load Data After
Load Address+Data After

Store Address Before
Store Data Before

Store Address+Data Before

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-11 XLEN-12 20 19 18

type dmode maskmax 0 select timing

4 1 6 XLEN - 31 1 1

17 12 11 10 7 6 5 4

action chain match m h s

6 1 4 1 1 1

3 2 1 0

u execute store load

1 1 1 1

Field Description Access Reset

maskmax Specifies the largest naturally aligned powers-of-
two (NAPOT) range supported by the hardware.
The value is the logarithm base 2 of the number
of bytes in that range. A value of 0 indicates
that only exact value matches are supported (one
byte range). A value of 63 corresponds to the
maximum NAPOT range, which is 263 bytes in
size.

R Preset

Continued on next page

RISC-V External Debug Support Version 0.13 41

select 0: Perform a match on the virtual address.
1: Perform a match on the data value loaded/s-
tored, or the instruction executed.

R/W 0

timing 0: The action for this trigger will be taken just be-
fore the instruction that triggered it is executed,
but after all preceding instructions are are com-
mitted.
1: The action for this trigger will be taken af-
ter the instruction that triggered it is executed.
It should be taken before the next instruction is
executed, but it is better to implement triggers
and not implement that suggestion than to not
implement them at all.
Most hardware will only implement one timing or
the other, possibly dependent on select, execute,
load, and store. This bit primarily exists for the
hardware to communicate to the debugger what
will happen. Hardware may implement the bit
fully writable, in which case the debugger has a
little more control.
Data load triggers with timing of 0 will result in
the same load happening again when the debugger
lets the core run. For data load triggers, debug-
gers must first attempt to set the breakpoint with
timing of 1.
A chain of triggers that don’t all have the same
timing value will never fire (unless consecutive in-
structions match the appropriate triggers).

R/W 0

Continued on next page

42 RISC-V External Debug Support Version 0.13

action Determines what happens when this trigger
matches.
0: Raise a breakpoint exception. (Used when soft-
ware wants to use the trigger module without an
external debugger attached.)
1: Enter Debug Mode. (Only supported when
hmode is 1.)
2: Start tracing.
3: Stop tracing.
4: Emit trace data for this match. If it is a data
access match, emit appropriate Load/Store Ad-
dress/Data. If it is an instruction execution, emit
its PC.
Other values are reserved for future use.

R/W 0

chain 0: When this trigger matches, the configured ac-
tion is taken.
1: While this trigger does not match, it prevents
the trigger with the next index from matching.

R/W 0

match 0: Matches when the value equals tdata2.
1: Matches when the top M bits of the value
match the top M bits of tdata2. M is XLEN-1
minus the index of the least-significant bit con-
taining 0 in tdata2.
2: Matches when the value is greater than or equal
to tdata2.
3: Matches when the value is less than tdata2.
4: Matches when the lower half of the value equals
the lower half of tdata2 after the lower half of the
value is ANDed with the upper half of tdata2.
5: Matches when the upper half of the value
equals the lower half of tdata2 after the upper
half of the value is ANDed with the upper half of
tdata2.
Other values are reserved for future use.

R/W 0

Continued on next page

RISC-V External Debug Support Version 0.13 43

m When set, enable this trigger in M mode. R/W 0

h When set, enable this trigger in H mode. R/W 0

s When set, enable this trigger in S mode. R/W 0

u When set, enable this trigger in U mode. R/W 0

execute When set, the trigger fires on the virtual address
or opcode of an instruction that is executed.

R/W 0

store When set, the trigger fires on the virtual address
or data of a store.

R/W 0

load When set, the trigger fires on the virtual address
or data of a load.

R/W 0

Instruction Count (icount, at 0x7a1)

This register is accessible as tdata1 when type is 3.

Warning! icount is just a proposal. So far nobody has commented on it, so it could
very easily be removed or changed in the future.

Writing unsupported values to any field in this register results in the reset value being written
instead. When a debugger wants to use a feature, it must write the appropriate value and then
read back the register to determine whether it is supported.

This trigger type is intended to be used as a single step that’s useful both for external de-
buggers and for software monitor programs. For that case it is not necessary to support count
greater than 1. The only two combinations of the mode bits that are useful in those scenarios
are u by itself, or m, h, s, and u all set.

If the hardware limits count to 1, and changes mode bits instead of decrementing count, this
register can be implemented with just 2 bits. One for u, and one for m, h, and s tied together.
If only the external debugger or only a software monitor needs to be supported, a single bit is
enough.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 24 23 10 9

type dmode 0 count m

4 1 XLEN - 29 14 1

8 7 6 5 0

h s u action

1 1 1 6

Field Description Access Reset

count When count is decremented to 0, the trigger fires.
Instead of changing count from 1 to 0, it is also
acceptable for hardware to clear m, h, s, and u.
This allows count to be hard-wired to 1 if this
register just exists for single step.

R/W 1

Continued on next page

44 RISC-V External Debug Support Version 0.13

m When set, every instruction completed or excep-
tion taken in M mode decrements count by 1.

R/W 0

h When set, every instruction completed or excep-
tion taken in in H mode decrements count by 1.

R/W 0

s When set, every instruction completed or excep-
tion taken in S mode decrements count by 1.

R/W 0

u When set, every instruction completed or excep-
tion taken in U mode decrements count by 1.

R/W 0

action Determines what happens when this trigger
matches.
0: Raise a breakpoint exception. (Used when soft-
ware wants to use the trigger module without an
external debugger attached.)
1: Enter Debug Mode. (Only supported when
hmode is 1.)
2: Start tracing.
3: Stop tracing.
4: Emit trace data for this match. If it is a data
access match, emit appropriate Load/Store Ad-
dress/Data. If it is an instruction execution, emit
its PC.
Other values are reserved for future use.

R/W 0

Chapter 6

Debug Transport Module (DTM)

Debug Transport Modules provide access to the DM over one or more transports (eg. JTAG or
USB).

There may be multiple DTMs in a single platform. Ideally every component that communicates
with the outside world includes a DTM, allowing a platform to be debugged through every transport
it supports. For instance a USB component could include a DTM. This would trivially allow any
platform to be debugged over USB. All that is required is that the USB module already in use also
has access to the Debug Module Interface.

Using multiple DTMs at the same time is not supported. It is left to the user to ensure this does
not happen.

This specification defines a JTAG DTM in Appendix A. Additional DTMs may be added in future
versions of this specification.

45

46 RISC-V External Debug Support Version 0.13

Appendix A

JTAG Debug Transport Module

This Debug Transport Module is based around a normal JTAG Test Access Port (TAP). The JTAG
TAP allows access to arbitrary JTAG registers by first selecting one using the JTAG instruction
register (IR), and then accessing it through the JTAG data register (DR).

A.1 Background

JTAG refers to IEEE Std 1149.1-2013. It is a standard that defines test logic that can be included
in an integrated circuit to test the interconnections between integrated circuits, test the integrated
circuit itself, and observe or modify circuit activity during the components normal operation. This
specification uses the latter functionality. The JTAG standard defines a Test Access Port (TAP)
that can be used to read and write a few custom registers, which can be used to communicate with
debug hardware in a component.

A.2 JTAG Registers

JTAG TAPs used as a DTM must have an IR of at least 5 bits. When the TAP is reset, IR must
default to 00001, selecting the IDCODE instruction. A full list of JTAG registers along with their
encoding is in Table A.1. If the IR actually has more than 5 bits, then the encodings in Table A.1
should be extended with 0’s in their most significant bits. The only regular JTAG registers a
debugger might use are BYPASS and IDCODE, but this specification leaves IR space for many
other standard JTAG instructions. Unimplemented instructions must select the BYPASS register.

IDCODE (at 0x01)

This register is selected (in IR) when the TAP state machine is reset. Its definition is exactly as
defined in IEEE Std 1149.1-2013.

47

48 RISC-V External Debug Support Version 0.13

Table A.1: JTAG DTM TAP Registers
Address Name Description Page

0x00 BYPASS JTAG recommends this encoding
0x01 IDCODE JTAG recommends this encoding
0x10 DTM Control and Status For Debugging 48
0x11 Debug Module Interface Access For Debugging 50
0x12 Reserved (BYPASS) Reserved for future RISC-V debugging
0x13 Reserved (BYPASS) Reserved for future RISC-V debugging
0x14 Reserved (BYPASS) Reserved for future RISC-V debugging
0x15 Reserved (BYPASS) Reserved for future RISC-V standards
0x16 Reserved (BYPASS) Reserved for future RISC-V standards
0x17 Reserved (BYPASS) Reserved for future RISC-V standards
0x1f BYPASS JTAG requires this encoding

31 28 27 12 11 1 0

Version PartNumber ManufId 1

4 16 11 1

Field Description Access Reset

Version Identifies the release version of this part. R Preset

PartNumber Identifies the designer’s part number of this part. R Preset

ManufId Identifies the designer/manufacturer of this part.
Bits 6:0 must be bits 6:0 of the designer/manufac-
turer’s Identification Code as assigned by JEDEC
Standard JEP106. Bits 10:7 contain the modulo-
16 count of the number of continuation characters
(0x7f) in that same Identification Code.

R Preset

DTM Control and Status (dtmcs, at 0x10)

The size of this register will remain constant in future versions so that a debugger can always
determine the version of the DTM.

31 18 17 16 15

0 dmihardreset dmireset 0

14 1 1 1

14 12 11 10 9 4 3 0

idle dmistat abits version

3 2 6 4

RISC-V External Debug Support Version 0.13 49

Field Description Access Reset

dmihardreset Writing 1 to this bit does a hard reset of the DTM,
causing the DTM to forget about any outstand-
ing DMI transactions. In general this should only
be used when the Debugger has reason to expect
that the outstanding DMI transaction will never
complete (e.g. a reset condition caused an inflight
DMI transaction to be cancelled).

W1 0

dmireset Writing 1 to this bit clears the sticky error state
and allows the DTM to retry or complete the pre-
vious transaction.

W1 0

idle This is a hint to the debugger of the minimum
number of cycles a debugger should spend in Run-
Test/Idle after every DMI scan to avoid a ‘busy’
return code (dmistat of 3). A debugger must still
check dmistat when necessary.
0: It is not necessary to enter Run-Test/Idle at
all.
1: Enter Run-Test/Idle and leave it immediately.
2: Enter Run-Test/Idle and stay there for 1 cycle
before leaving.
And so on.

R Preset

Continued on next page

50 RISC-V External Debug Support Version 0.13

dmistat 0: No error.
1: Reserved. Interpret the same as 2.
2: An operation failed (resulted in op of 2).
3: An operation was attempted while a DMI ac-
cess was still in progress (resulted in op of 3).

R 0

abits The size of address in dmi. R Preset

version 0: Version described in spec version 0.11.
1: Version described in spec version 0.13 (and
later?), which reduces the DMI data width to 32
bits.
Other values are reserved for future use.

R 1

Debug Module Interface Access (dmi, at 0x11)

This register allows access to the Debug Module Interface (DMI).

In Update-DR, the DTM starts the operation specified in op unless the current status reported in
op is sticky.

In Capture-DR, the DTM updates data with the result from that operation, updating op if the
current op isn’t sticky.

See Section C.1 and Table C.1 for examples of how this is used.

The still-in-progress status is sticky to accommodate debuggers that batch together a number
of scans, which must all be executed or stop as soon as there’s a problem.

For instance a series of scans may write a Debug Program and execute it. If one of the writes
fails but the execution continues, then the Debug Program may hang or have other unexpected
side effects.

abits+33 34 33 2 1 0

address data op

abits 32 2

RISC-V External Debug Support Version 0.13 51

Field Description Access Reset

address Address used for DMI access. In Update-DR this
value is used to access the DM over the DMI.

R/W 0

data The data to send to the DM over the DMI during
Update-DR, and the data returned from the DM
as a result of the previous operation.

R/W 0

op When the debugger writes this field, it has the
following meaning:
0: Ignore data and address. (nop)
Don’t send anything over the DMI during
Update-DR. This operation should never result in
a busy or error response. The address and data
reported in the following Capture-DR are unde-
fined.
1: Read from address. (read)
2: Write data to address. (write)
3: Reserved.
When the debugger reads this field, it means the
following:
0: The previous operation completed successfully.
1: Reserved.
2: A previous operation failed. The data scanned
into dmi in this access will be ignored. This status
is sticky and can be cleared by writing dmireset in
dtmcs.
This indicates that the DM itself responded with
an error, e.g. in the System Bus and Serial Port
overflow/underflow cases.
3: An operation was attempted while a DMI re-
quest is still in progress. The data scanned into
dmi in this access will be ignored. This status is
sticky and can be cleared by writing dmireset in
dtmcs. If a debugger sees this status, it needs to
give the target more TCK edges between Update-
DR and Capture-DR. The simplest way to do that
is to add extra transitions in Run-Test/Idle.
(The DTM, DM, and/or component may be in
different clock domains, so synchronization may
be required. Some relatively fixed number of TCK
ticks may be needed for the request to reach the
DM, complete, and for the response to be syn-
chronized back into the TCK domain.)

R/W 2

52 RISC-V External Debug Support Version 0.13

BYPASS (at 0x1f)

1-bit register that has no effect. It is used when a debugger does not want to communicate with
this TAP.

0

0

1

A.3 JTAG Connector

To make it easy to acquire debug hardware, this spec recommends a connector that is compatible
with the Atmel AVR JTAG Connector, as described below.

The connector is a .05”-spaced, gold-plated male header with .016” thick hardened copper or beryl-
lium bronze square posts (SAMTEC FTSH-105 or equivalent). Female connectors are compatible
20µm gold connectors.

Viewing the male header from above (the pins pointing at your eye), a target’s connector looks as
it does in Table A.2. The function of each pin is described in Table A.3.

Table A.2: JTAG Connector Diagram
TCK 1 2 GND

TDO 3 4 VCC

TMS 5 6 (SRSTn)

(NC) 7 8 (TRSTn)

TDI 9 10 GND

Target connectors may be shrouded. In that case the key slot should be next to pin 5. Female
headers should have a matching key.

Debug adapters should be tagged or marked with their isolation voltage threshold (i.e. unisolated,
250V, etc.).

All debug adapter pins other than GND should be current-limited to 20mA.

RISC-V External Debug Support Version 0.13 53

Table A.3: JTAG Connector Pinout
1 TCK JTAG TCK signal, driven by the debug adapter. This

pin must be clearly marked in both male and female
headers.

5 TMS JTAG TMS signal, driven by debug adapter.

9 TDI JTAG TDI signal, driven by the debug adapter.

3 TDO JTAG TDO signal, driven by the target.

8 TRSTn Test Reset (optional, only used by some devices. Used
to reset the JTAG TAP Controller).

4 VCC Power provided by the target, which may be used to
power the debug adapter. Must be able to source at
least 25mA. This signal also serves as the reference

voltage for logic high.

2, 10 GND Target ground.

6 SRSTn Active-low reset signal, driven by the debug adapter.
Asserting reset should reset any RISC-V cores as well
as any other peripherals on the PCB. It should not

reset the debug logic. Although connecting this pin is
optional, it is recommended as it allows the debugger
to hold the target device in a reset state, which may

be essential to debug some scenarios. If not
implemented in a target, this pin must not be

connected.

54 RISC-V External Debug Support Version 0.13

Appendix B

Hardware Implementations

Below are two possible implementations. A designer could choose one, mix and match, or come up
with their own design.

B.1 Abstract Command Based

Halting happens by stalling the processor execution pipeline.

Muxes on the register file(s) allow for accessing GPRs and CSRs using the Access Register abstract
command.

B.2 Execution Based

This implementation only implements the Access Register abstract command for GPRs on a halted
hart, and relies on the Program Buffer for all other operations.

This method uses the processor’s existing pipeline and ability to execute from arbitrary memory
locations to avoid modifications to a processor’s datapath. When haltreq is set, the Debug Module
raises a special interrupt to the selected hart. This interrupt causes the hart to enter Debug Mode
and jump to a memory region that is serviced by the DM and execute a “park loop”. When taking
this exception, pc is saved to dpc. In the park loop the hart writes its mhartid to a memory location
within the Debug Module to indicate that it is halted. To allow the DM to individually control one
out of several halted harts, each hart polls a specific memory location or bit in a dscratch CSR
to determine whether the debugger wants it to continue.

data0 etc. are mapped into regular memory at an address relative to zero with only a 12-bit imm.
The exact address is an implementation detail that a debugger must not rely on. For example, the
data registers might be mapped to 0x400.

To implement the abstract 32-bit GPR access instructions, the debugger causes the hart to execute
lw <gpr>, 0x400(zero) or sw 0x400(zero), <gpr>. 64- and 128-bit accesses use ld/sd and

55

56 RISC-V External Debug Support Version 0.13

lq/sq respectively.

To execute the Program Buffer, the debugger causes the hart to execute j dm program buffer.
When ebreak is executed (indicating the end of the Program Buffer code) the hart jumps back to
its park loop. If an exception is encountered, the hart jumps to its debug exception address, which
writes to an address in the Debug Module which indicates exception, then contains a jump back to
the hart’s park loop. The DM infers from the write that there was an exception, and sets cmderr
appropriately.

To resume execution, the debug module causes the core to execute a dret. When dret is executed,
pc is restored from dpc and normal execution resumes at the privilege set by prv.

Appendix C

Debugger Implementation

This section details how an external debugger might use the described debug interface to perform
some common operations on RISC-V cores using the JTAG DTM described in Appendix A. All
these examples assume a 32-bit core but it should be easy to adapt the examples to 64- or 128-bit
cores.

To keep the examples readable, they all assume that everything succeeds, and that they complete
faster than the debugger can perform the next access. This will be the case in a typical JTAG
setup. However, the debugger must always check the sticky error status bits after performing a
sequence of actions. If it sees any that are set, then it should attempt the same actions again,
possibly while adding in some delay, or explicit checks for status bits.

C.1 Debug Module Interface Access

To read an arbitrary Debug Module register, select dmi, and scan in a value with op set to 1,
and address set to the desired register address. In Update-DR the operation will start, and in
Capture-DR its results will be captured into data. If the operation didn’t complete in time, op
will be 3 and the value in data must be ignored. The busy condition must be cleared by writing
dmireset in dtmcs, and then the second scan scan must be performed again. This process must be
repeated until op returns 0. In later operations the debugger should allow for more time between
Capture-DR and Update-DR.

To write an arbitrary Debug Bus register, select dmi, and scan in a value with op set to 2, and
address and data set to the desired register address and data respectively. From then on everything
happens exactly as with a read, except that a write is performed instead of the read.

It should almost never be necessary to scan IR, avoiding a big part of the inefficiency in typical
JTAG use.

57

58 RISC-V External Debug Support Version 0.13

C.2 Main Loop

A debugger continuously monitors haltsum to see if any harts have spontaneously halted.

C.3 Halting

To halt a hart, the debugger sets hartsel and haltreq. Then it waits for allhalted to become 1.

C.4 Accessing Registers

Using Abstract Command

Read s0 using abstract command:

Op Address Value Comment

Write command size = 2, transfer, 0x1008 Read s0

Read data0 - Returns value that was in s0

Write mstatus using abstract command:

Op Address Value Comment

Write data0 new value

Write command size = 2, transfer, write, 0x300 Write mstatus

Using Program Buffer

Abstract commands are used to exchange data with GPRs. Using this mechanism, other registers
can be accessed by moving their value into/out of GPRs.

Write mstatus using program buffer:

Op Address Value Comment

Write progbuf0 csrw s0,

MSTATUS

Write progbuf1 ebreak

Write data0 new value

Write command size = 2,
postexec,
transfer,

write, 0x1008

Write s0, then execute program buffer

Read f1 using program buffer:

RISC-V External Debug Support Version 0.13 59

Op Address Value Comment

Write progbuf0 fmv.x.s s0, f1

Write progbuf1 ebreak

Write command postexec Execute program buffer

Write command transfer 0x1008 read s0

Read data0 - Returns the value that was in f1

C.5 Reading Memory

Using System Bus Access

Read a word from memory using system bus access:

Op Address Value Comment

Write sbaddress0 address

Write sbcs sbaccess = 2, sbsingleread Perform a read

Read sbdata0 - Value read from memory

Read block of memory using system bus access:

Op Address Value Comment

Write sbaddress0 address

Write sbcs sbaccess = 2,
sbsingleread,
sbautoread,

sbautoincrement

Turn on autoread and autoincrement, and perform a
read

Read sbdata0 - Value read from memory

Read sbdata0 - Next value read from memory

...

Write sbcs 0 Clear sbautoread

Read data0 - Get last value read from memory.

Using Program Buffer

Read a word from memory using program buffer:

Op Address Value Comment

Write progbuf0 lw s0, 0(s0)

Write progbuf1 ebreak

Write data0 address

Write command write, postexec, 0x1008 Write s0, then execute program buffer

Write command 0x1008 Read s0

Read data0 - Value read from memory

60 RISC-V External Debug Support Version 0.13

Read block of memory using program buffer:

Op Address Value Comment

Write progbuf0 lw s1, 0(s0)

Write progbuf1 addi s0, s0, 4

Write progbuf2 ebreak

Write data0 address

Write command write, postexec, 0x1008 Write s0, then execute program buffer

Write command postexec, 0x1009 Read s1, then execute program buffer

Write abstractauto autoexecdata [0] Set autoexecdata [0]

Read data0 - Get value read from memory, then execute program
buffer

Read data0 - Get next value read from memory, then execute
program buffer

...

Write abstractauto 0 Clear autoexecdata [0]

Read data0 - Get last value read from memory.

TODO: Table C.1 shows the scans involved in reading a single word using this method.

Table C.1: Memory Read Timeline
JTAG State Activity

TODO TODO TODO

C.6 Writing Memory

Using System Bus Access

Write a word to memory using system bus access:

Op Address Value Comment

Write sbaddress0 address

Write sbdata0 value

Write block of memory using system bus access:

Op Address Value Comment

Write sbaddress0 address

Write sbcs sbaccess = 2,
sbautoincrement

Turn on autoincrement

Write sbdata0 value0

Write sbdata0 value1

...

Write sbdata0 valueN

RISC-V External Debug Support Version 0.13 61

Using Program Buffer

Write a word to memory using program buffer:

Op Address Value Comment

Write progbuf0 sw 0(s0), s1

Write progbuf1 ebreak

Write data0 value

Write command write, 0x1008 Write s0

Write data0 address

Write command write, postexec, 0x1009 Write s1, then execute program buffer

Write block of memory using program buffer:

Op Address Value Comment

Write progbuf0 sw s1, 0(s0)

Write progbuf1 addi s0, s0, 4

Write progbuf2 ebreak

Write data0 address

Write command write, 0x1008 Write s0

Write data0 value0

Write command write, postexec, 0x1009 Write s1, then execute program buffer

Write abstractauto autoexecdata [0] Set autoexecdata [0]

Write data0 value1

...

Write data0 valueN

Write abstractauto 0 Clear autoexecdata [0]

C.7 Running

First, the debugger should restore any registers that it has clobbered. Once that’s done, it can let
the core run by setting resumereq.

C.8 Single Step

A debugger can single step the core by setting a breakpoint on the next instruction and letting the
core run, or by asking the hardware to perform a single step. The former requires the debugger to
have much more knowledge of the hardware than the latter, so the latter is preferred.

Using the hardware single step feature is almost the same as regular running. The debugger just
sets step in dcsr before letting the core run. The core behaves exactly as in the running case, except
that interrupts are left off and it only fetches and executes a single instruction before re-entering
Debug Mode.

62 RISC-V External Debug Support Version 0.13

C.9 Handling Exceptions

Generally the debugger can avoid exceptions by being careful with the programs it writes. Some-
times they are unavoidable though, eg. if the user asks to access memory or a CSR that is not
implemented. A typical debugger will not know enough about the platform to know what’s going
to happen, and must attempt the access to determine the outcome.

When an exception occurs while executing the Program Buffer, cmderr becomes set. The debugger
can check this field to see whether a program encountered an exception. If there was an exception,
it’s left to the debugger to know what must have caused it.

C.10 Quick Access

Halt the hart for a minimum amount of time to perform a single memory write.

There are a variety of instructions to transfer data between GPRs and the data registers. They
are either loads/stores or CSR reads/writes. The specific addresses also vary. This is all specified
in hartinfo. The example here uses the pseudo-op transfer dest, src to represent all these
options.

Op Address Value Comment

Write progbuf0 transfer arg2, s0 Save s0

Write progbuf1 transfer s0, arg0 Read first argument (address)

Write progbuf2 transfer arg0, s1 Save s1

Write progbuf3 transfer s1, arg1 Read second argument (data)

Write progbuf4 sw 0(s0), s1

Write progbuf5 transfer s1, arg0 Restore s1

Write progbuf6 transfer s0, arg2 Restore s0

Write progbuf7 ebreak

Write data0 address

Write data1 data

Write command 0x10000000 Perform quick access

Appendix D

Trace Module

This part of the spec needs work before it’s ready to be implemented, which is why it’s
in the appendix. It’s left here to give a rough idea of some of the issues to consider.

Aside from viewing the current state of a core, knowing what happened in the past can be incredibly
helpful. Capturing an execution trace can give a user that view. Unfortunately processors run so
fast that they generate trace data at a very large rate. To help deal with this, the trace data format
allows for some simple compression.

The trace functionality described here aims to support 3 different use cases:

1. Full reconstruction of all processor state, including register values etc. To achieve this goal
the decoder will have to know what code is being executed, and know the exact behavior of
every RISC-V instruction.

2. Reconstruct just the instruction stream. Get enough data from the trace stream that it
is possible to make a list of every instruction executed. This is possible without knowing
anything about the code or the core executing it.

3. Watch memory accesses for a certain memory region.

Trace data may be stored to a special on-core RAM, RAM on the system bus, or to a dedicated
off-chip interface. Only the system RAM destination is covered here.

D.1 Trace Data Format

Trace data should be both compact and easy to generate. Ideally it’s also easy to decode, but since
decoding doesn’t have to happen in real time and will usually have a powerful workstation to do
the work, this is the least important concern.

Trace data consists of a stream of 4-bit packets, which are stored in memory in 32-bit words by
putting the first packet in bits 3:0 of the 32-bit word, the second packet into bits 7:4, and so on.
Trace packets and their encoding are listed in Table D.1.

63

64 RISC-V External Debug Support Version 0.13

Table D.1: Trace Sequence Header Packets
0000 Nop Packet that indicates no data. The trace source must

use these to ensure that there are 8 synchronization
points in each buffer.

0001 PC Followed by a Value Sequence containing bits
XLEN-1:1 of the PC if the compressed ISA is
supported, or bits XLEN-1:2 of the PC if the

compressed ISA is not supported. Missing bits must
be filled in with the last PC value.

0010 Branch Taken

0011 Branch Not Taken

0100 Trace Enabled Followed by a single packet indicating the version of
the trace data (currently 0).

0101 Trace Disabled Indicates that trace was purposefully disabled, or that
some sequences were dropped because the trace buffer

overflowed.

0110 Privilege Level Followed by a packet containing whether the cause of
the change was an interrupt (1) or something else (0)

in bit 3, PRV[1:0] in bits 2:1, and IE in bit 0.

0111 Change Hart Followed by a Value Sequence containing the hart ID
of the hart whose trace data follows. Missing bits

must be filled in with 0.

1000 Load Address Followed by a Value Sequence containing the address.
Missing bits must be filled in with the last Load

Address value.

1001 Store Address Followed by a Value Sequence containing the address.
Missing bits must be filled in with the last Store

Address value.

1010 Load Data Followed by a Value Sequence containing the data.
Missing bits must be filled in by sign extending the

value.

1011 Store Data Followed by a Value Sequence containing the data.
Missing bits must be filled in by sign extending the

value.

1100 Timestamp Followed by a Value Sequence containing the
timestamp. Missing bits should be filled in with the

last Timestamp value.

1101 Reserved Reserved for future standards.

1110 Custom Reserved for custom trace data.

1111 Custom Reserved for custom trace data.

RISC-V External Debug Support Version 0.13 65

Several header packets are followed by a Value Sequence, which can encode values between 4 and
64 bits. The sequence consists first of a 4-bit size packet which contains a single number N. It is
followed by N+1 4-bit packets which contain the value. The first packet contains bits 3:0 of the
value. The next packet contains bits 7:4, and so on.

D.2 Trace Events

Trace events are events that occur when a core is running that result in trace packets being emitted.
They are listed in Table D.2.

Table D.2: Trace Data Events
Opcode Action

jal If emitbranch is disabled but emitpc is enabled, emit 2
PC values: first the address of the instruction, then

the address being jumped to.

jalr If emitbranch is disabled but emitpc is enabled, emit 2
PC values: first the address of the instruction, then

the address being jumped to. Otherwise, if
emitstoredata is enabled emit just the destination PC.

BRANCH If emitbranch is enabled, emit either Branch Taken or
Branch Not Taken. Otherwise if emitpc is enabled and

the branch is taken, emit 2 PC values: first the
address of the branch, then the address being

branched to.

LOAD If emitloadaddr is enabled, emit the address. If
emitloaddata is enabled, emit the data that was

loaded.

STORE If emitstoreaddr is enabled, emit the address. If
emitstoredata is enabled, emit the data that is stored.

Traps scall, sbreak, ecall, ebreak, and eret emit the
same as if they were jal instructions. In addition

they also emit a Privilege Level sequence.

Interrupts Emit PC (if enabled) of the last instruction executed.
Emit Privilege Level (if enabled). Finally emit the

new PC (if enabled).

CSR instructions For reads emit Load Data (if enabled). For writes
emit Store Data (if enabled).

Data Dropped After packet sequences are dropped because data is
generated too quickly, Trace Disabled must be

emitted. It’s not necessary to follow that up with a
Trace Enabled sequence.

66 RISC-V External Debug Support Version 0.13

D.3 Synchronization

If a trace buffer wraps, it is no longer clear what in the buffer is a header and what isn’t. To
guarantee that a trace decoder can sync up easily, each trace buffer must have 8 synchronization
points, spaced evenly throughout the buffer, with the first one at the very start of the buffer. A
synchronization point is simply an address where there is guaranteed to be a sequence header. To
make this happen, the trace source can insert a number of Nop headers into the sequence just
before writing to the synchronization point.

Aside from synchronizing a place in the data stream, it’s also necessary to send a full PC, Read
Address, Write Address, and Timestamp in order for those to be fully decoded. Ideally that happens
the first time after every synchronization point, but bandwidth might prevent that. A trace source
should attempt to send one full value for each of these (assuming they’re enabled) soon after each
synchronization point.

D.4 Trace Registers

Table D.3: Trace Registers
Address Name Page

0x728 Trace 66
0x729 Trace Buffer Start 67
0x72a Trace Buffer End 67
0x72b Trace Buffer Write 68

Trace (trace, at 0x728)

31 25 24 23 22 21 20

0 wrapped emittimestamp emitstoredata emitloaddata emitstoreaddr

7 1 1 1 1 1

19 18 17 16 15 10 9 8

emitloadaddr emitpriv emitbranch emitpc 0 fullaction

1 1 1 1 6 2

7 6 5 4 3 2 1 0

0 destination 0 stall discard supported

2 2 1 1 1 1

Field Description Access Reset

wrapped 1 if the trace buffer has wrapped since the last
time discard was written. 0 otherwise.

R 0

Continued on next page

RISC-V External Debug Support Version 0.13 67

emittimestamp Emit Timestamp trace sequences. R/W 0

emitstoredata Emit Store Data trace sequences. R/W 0

emitloaddata Emit Load Data trace sequences. R/W 0

emitstoreaddr Emit Store Address trace sequences. R/W 0

emitloadaddr Emit Load Address trace sequences. R/W 0

emitpriv Emit Privilege Level trace sequences. R/W 0

emitbranch Emit Branch Taken and Branch Not Taken trace
sequences.

R/W 0

emitpc Emit PC trace sequences. R/W 0

fullaction Determine what happens when the trace buffer is
full. 0 means wrap and overwrite. 1 means turn
off trace until discard is written as 1. 2 means
cause a trace full exception. 3 is reserved for fu-
ture use.

R/W 0

destination 0: Trace to a dedicated on-core RAM (which is
not further defined in this spec).
1: Trace to RAM on the system bus.
2: Send trace data to a dedicated off-chip inter-
face (which is not defined in this spec). This does
not affect execution speed.
3: Reserved for future use.
Options 0 and 1 slow down execution (eg. because
of system bus contention).

R/W Preset

stall When 1, the trace logic may stall processor execu-
tion to ensure it can emit all the trace sequences
required. When 0 individual trace sequences may
be dropped.

R/W 1

discard Writing 1 to this bit tells the trace logic that any
trace collected is no longer required. When trac-
ing to RAM, it resets the trace write pointer to
the start of the memory, as well as wrapped.

W1 0

Trace Buffer Start (tbufstart, at 0x729)

If destination is 1, this register contains the start address of block of RAM reserved for trace data.

XLEN-1 0

address

XLEN

Trace Buffer End (tbufend, at 0x72a)

If destination is 1, this register contains the end address (exclusive) of block of RAM reserved for
trace data.

68 RISC-V External Debug Support Version 0.13

XLEN-1 0

address

XLEN

Trace Buffer Write (tbufwrite, at 0x72b)

If destination is 1, this read-only register contains the address that the next trace packet will be
written to.

XLEN-1 0

address

XLEN

Appendix E

Future Ideas

Some future version of this spec may implement some of the following features.

1. The spec defines several additions to the Device Tree which enable a debugger to discover
hart IDs and supported triggers for all the cores in the system.

2. DTMs can function as general bus slaves, so they would look like regular RAM to bus masters.

3. Harts can be divided into groups. All the harts in the same group can be halted/run/stepped
simultaneously. When a hart hits a breakpoint, all the other harts in the same group also
halt within a few clock cycles.

4. DTMs are specified for protocols like USB, I2C, SPI, and SWD.

5. Core registers can be read without halting the processor.

6. The debugger can communicate with the power manager to power cores up or down, and to
query their status.

7. Serial ports can raise an interrupt when a send/receive queue becomes full/empty.

8. The debug interrupt can be masked by running code. If the interrupt is asserted, then
deasserted, and then asserted again the debug interrupt happens anyway. This mechanism
can be used to eg. read/write memory with minimal interruption, making sure never to
interrupt during a critical piece of code.

9. The debugger can non-intrusively sample a recent PC value from any running hart.

69

70 RISC-V External Debug Support Version 0.13

Appendix F

Change Log

Revision Date Author(s) Description

b4f1f43 2017-06-08 Tim Newsome Merge pull request #79 from riscv/cleanups
09c7f6e 2017-06-08 mwachs5 Merge remote-tracking branch ’origin/0.13’ into

cleanups
617da4c 2017-06-08 Megan Wachs Update description of R/W1C
de2c56b 2017-06-08 Megan Wachs Clarify that DCSR is also not updated on ebreak
efa615d 2017-06-07 Tim Newsome Increase xdebugver field size to 4 bits. (#92)
c1b3e54 2017-06-07 Megan Wachs Merge pull request #91 from riscv/ndmreset
5c7c1bb 2017-06-07 Tim Newsome Merge branch ’0.13’ into cleanups
72bb874 2017-06-06 Megan Wachs Merge branch ’0.13’ into ndmreset
1fbbe6e 2017-06-06 Megan Wachs Merge pull request #90 from riscv/dpc clarifications
89ffe50 2017-06-06 mwachs5 NDMRESET: Clarify what it may and may not do
1932da0 2017-06-06 mwachs5 DPC: Clarifications on its meaning
03bcafe 2017-06-06 Megan Wachs Merge pull request #89 from riscv/datacount
6470fdb 2017-06-06 mwachs5 ABSTRACTCS: Correct inconsistency on the num-

ber of data words.
1f4a1fe 2017-06-06 Megan Wachs Merge pull request #88 from riscv/W0 corrections
3ca82b4 2017-06-06 Megan Wachs More corrections for R vs R/W1C on SERCS
9705fb8 2017-06-06 Megan Wachs Correct a bunch of W0 registers
7531c41 2017-06-05 Megan Wachs Merge pull request #80 from riscv/issue76
850bd87 2017-06-05 Megan Wachs Merge branch ’0.13’ into issue76
43307eb 2017-06-05 Megan Wachs Merge pull request #81 from riscv/issue63
989c60d 2017-06-05 Tim Newsome Fix language. We can only halt harts, not cores.
517a08b 2017-06-05 Tim Newsome Incorporate review feedback.
802be28 2017-06-05 Tim Newsome Clarify/fix Quick Access example.
dbcaec8 2017-06-02 Tim Newsome Merge branch ’0.13’ into cleanups
b8cc523 2017-06-02 Tim Newsome Add included tex files as dependencies. (#78)
d0a5959 2017-06-02 Tim Newsome Merge pull request #77 from riscv/pageno
15f864a 2017-06-01 Tim Newsome Language cleanups, consistency and typo fixes.
4ecae86 2017-06-01 Tim Newsome Add page numbers to list-of-register tables.
59b3e4a 2017-05-19 Megan Wachs Setting up a Travis regression to check for build errors

(#72)

71

72 RISC-V External Debug Support Version 0.13

124bf44 2017-05-17 mwachs5 Debug Module: CMDERR is Write-1-to clear, not
R/W0

bb6c7f0 2017-05-17 mwachs5 SW Registers file should be XML, not TEX
d360358 2017-05-10 Megan Wachs

(Temporary
Acct.)

Remove virtual register from core registers.xml

bfc64fb 2017-05-10 Megan Wachs
(Temporary
Acct.)

Add missing sw registers.tex file

0512f5d 2017-05-06 mwachs5 Move virtual ’prv’ register to a seperate section to
make it more clear it is not a real register.

6b3c9d7 2017-05-06 mwachs5 Clarify haltreq/resumereq/resumack
0a487eb 2017-04-26 mwachs5 jtag: Change specified JTAG pinout from Coretex to

AVR, to provide for TRSTn option.
93cdfaf 2017-04-26 mwachs5 DM : Clarify that DATA/PROGBUF can’t be writ-

ten while busy.
ef98f23 2017-04-19 mwachs5 jtag: Make it clear that a NOP is really a NOP.
a6f8efa 2017-04-17 mwachs5 single step: Exceptions count as the ’step’ comple-

tion.
bf11e9e 2017-04-17 mwachs5 resumeack: fix some LaTeX cross references
4afa081 2017-04-11 mwachs5 halt/resumereq: Clarify what setting them to 0 or 1

does
297a39b 2017-04-06 mwachs5 fix chisel build
082c499 2017-04-06 mwachs5 Rename resumed to resumeack, and add more text

about what these bits mean.
909d617 2017-04-06 mwachs5 Correct some cross references after removing all the

multiply listed registers
dd09914 2017-04-06 mwachs5 Add ’resumedall’ and ’resumedany’ bits to avoid race

condition on about to resume and just halted
feb88fc 2017-04-05 mwachs5 JTAG DTM: Clarify that leading bits are 0 for more

than 5-bit IR
75b96ea 2017-04-04 mwachs5 use renamed dm registers file
9f3ec7e 2017-04-04 mwachs5 debugger implementation: remove some old TODO

and commentary.
45dd5b5 2017-04-04 mwachs5 Don’t list out every single DM register for those that

are just indexed versions
b8b3aa2 2017-04-04 mwachs5 remove core-side register definitions from Debug

Module. Rename dm1 to dm
d979a13 2017-04-04 mwachs5 remove core-side serial port specification, as these

should look like implementation-specific devices with
appropriate drivers.

b56870b 2017-04-04 mwachs5 Remove the wording about ’debug exception’, as it is
called breakpoint exception in the RISC-V Spec.

1e9347d 2017-04-03 mwachs5 Add description of hasel
0dda84d 2017-04-03 mwachs5 JTAG DTM: Clean up TAP register descriptions
82ccde5 2017-04-03 mwachs5 JTAG DTM: Add a hard DMI bit which cancels the

outstanding DMI transaction
bd2a3d1 2017-04-03 mwachs5 remove preexec

RISC-V External Debug Support Version 0.13 73

02c733a 2017-04-03 mwachs5 remove preexec from Abstract State diagram.
1e271d6 2017-04-03 mwachs5 Update Debugger implementation for DMI register

access, and fix tex compile issues.
155dda4 2017-04-03 mwachs5 Rewrite HW Implementation examples to describe a

pure abstract command approach, and to not rely
on harts executing every instruciton which is fetched
from the Debug Module

556c2be 2017-04-03 mwachs5 minor wording edits about RISC-V core registers
523c64a 2017-04-03 mwachs5 Edits to the Debug Module section.
b9a371f 2017-04-03 mwachs5 add missing trace.tex file.
58b2396 2017-04-03 mwachs5 Re-order the JTAG DTM Sections
a8827e2 2017-04-03 mwachs5 Edits to the System Overview.
c5417ce 2017-04-03 mwachs5 add more sections as seperate files.
287d5c6 2017-04-03 mwachs5 moving more files to seperate tex files.
9e873f4 2017-04-03 mwachs5 move trigger info into seperate file.
2c89a86 2017-04-03 mwachs5 move risc-v core debug info into seperate file.
e676491 2017-04-03 mwachs5 Move System Overview to seperate file
03df6ee 2017-04-03 mwachs5 Move Debug Module description to a seperate file.
5faa430 2017-04-03 mwachs5 add back in JTAG DTM in appendix
7b28b11 2017-04-03 mwachs5 Move jtag DTM to appendix. Move some text to

commentary.
cc183ba 2017-04-03 mwachs5 move introduction to a seperate file. Comment out

reading order.
2c83830 2017-04-03 mwachs5 Merge remote-tracking branch ’origin/0.13’ into 0.13
e3cf6ab 2017-04-03 Megan Wachs Merge pull request #18 from riscv/intro edits
60c5a1c 2017-04-03 Megan Wachs Merge branch ’0.13’ into intro edits
f727d14 2017-04-03 mwachs5 Use Chapters vs Sections. Needs reorganization.
815951d 2017-04-03 mwachs5 Formatting updates. Make this look more like the

RISC-V specs. Need to use chapter vs. section
69ffaf8 2017-03-31 mwachs5 Move XML files into a subdirectory.
b276384 2017-03-31 mwachs5 Remove debug rom.S
112bbac 2017-03-31 mwachs5 figures: reorganize the figures into directories.
2d05746 2017-03-31 Megan Wachs Merge pull request #50 from riscv/add license
1e5c068 2017-03-27 Megan Wachs Add LICENSE
0e2d08a 2017-03-22 Megan Wachs Merge pull request #47 from poweihuang17/0.13
fc17730 2017-03-22 Po-wei Huang Change some halt mode into debug mode.
8ccf029 2017-03-22 Po-wei Huang All halt mode changed to debug mode to synchronize

with the priv spec.
f143d9e 2017-03-21 mwachs5 Correct duplicated progbuf register names
0797ec1 2017-03-17 mwachs5 autoexec: make autoexec bits match the number of

data words there really are.
8e76d93 2017-03-17 mwachs5 dm1 registers: move a few more things around. Re-

duce abstract data words back to 12.
f8bf292 2017-03-17 mwachs5 dm1 registers: resolve some address conflicts and in-

consistencies
a74dff9 2017-03-17 mwachs5 access register: some small bit changes
2e6b0ca 2017-03-15 mwachs5 config string: Fix LaTeX compile errors.

74 RISC-V External Debug Support Version 0.13

f83260a 2017-03-10 mwachs5 Abstract Commands: clarify that 32-bit reads should
always work. This allows reading MISA.

6f9347a 2017-03-10 mwachs5 Config String: change the Abstract Command to
DMI registers. Allow the same registers to be used
for unspecified identifier information.

4ea10ff 2017-03-10 mwachs5 abstract: Make autoexec apply to all data and prog-
buf words. Make a seperate register which is optional.

5008436 2017-03-10 mwachs5 abstract: Allow up to 16 progbuf and/or data words.
Inform debugger about dscratch registers available
for its use.

aaa13e5 2017-03-06 mwachs5 Command: use the name ’cmdtype’ not ’type’ to al-
low easier auto-generation of Scala code.

e9bb72c 2017-03-06 mwachs5 Hart Array: Add registers for hart array.
5d17a35 2017-03-06 mwachs5 DM: Move addresses around for better seperation of

functionalities in HW
25ccaa8 2017-03-06 mwachs5 CONTROL: Rename control and status registers to

CS for consistency and to accurately reflect their
functionality.

45cf6c2 2017-03-06 mwachs5 Errors: fix up the bit assignments in SERSTATUS
with the addition of error bit.

38cb5a0 2017-03-06 mwachs5 Errors: Make errors write-1-to-clear.
b436d77 2017-03-03 mwachs5 triggers: Clarify that matches are against virtual ad-

dresses.
793bb85 2017-03-03 mwachs5 triggers: Add suggested timings for best user experi-

ence.
2669866 2017-03-03 mwachs5 stoptime/stopcycle: Make their functionality match

their name. Allow any reset value.
c85a1cf 2017-03-01 mwachs5 config string: Simplify the Config String Address ab-

stract command.
a303a6b 2017-03-02 Megan Wachs Update README.md
1951ae3 2017-03-01 Megan Wachs Merge pull request #35 from sifive/generate chisel
2e2dc28 2017-03-01 Megan Wachs Merge pull request #34 from sifive/serial addrs
c087c34 2017-03-01 mwachs5 Merge remote-tracking branch ’origin/0.13’ into gen-

erate chisel
92a4923 2017-03-01 mwachs5 serial: tweak addresses.
b09f460 2017-03-01 mwachs5 serial: tweak addresses.
6477837 2017-03-01 mwachs5 chisel: tweaks to class names.
be83e3e 2017-02-28 Tim Newsome Clarify stoptime, stopcycle.
7f94662 2017-02-27 mwachs5 Merge remote-tracking branch ’origin/0.13’ into gen-

erate chisel
c17c17c 2017-02-27 Tim Newsome Abstract command that returns config string addr.
096dfbc 2017-02-27 Tim Newsome Acknowledge Alex.
c0253ab 2017-02-24 Tim Newsome Explain tdata1 type a bit more.
e43ac2e 2017-02-24 Tim Newsome Clarify how to enumerate triggers again.
c6e3e20 2017-02-23 Tim Newsome Revert previous commit.
ef770bf 2017-02-23 Tim Newsome mcontrol and icount mask tdata2, not tdata1.
27806f2 2017-02-23 mwachs5 rename ’type’ to ’cmdtype’ purely so my auto-

generation scripts work.

RISC-V External Debug Support Version 0.13 75

e46798d 2017-02-22 mwachs5 Add Abstract Commands to automatic chisel
b3bb939 2017-02-21 mwachs5 Generate Chisel headers as well for Debug Module.
3d5b6f6 2017-02-22 Tim Newsome Merge pull request #31 from sifive/ab-

stract command types
c9db98c 2017-02-22 Tim Newsome Simplify description of op statuses.
bda39cc 2017-02-22 mwachs5 Add explicit type field to Abstract Command.
34ff1d8 2017-02-22 Tim Newsome Merge pull request #30 from sifive/-

more ibuf progbuf
f83a1ca 2017-02-22 mwachs5 Finish up replacement of ibuf-¿progbuf
ddde0a2 2017-02-22 Tim Newsome Merge pull request #28 from

sifive/inst supply vs progbuf
9666e51 2017-02-22 mwachs5 IBUF-¿PROGBUF
5308ecd 2017-02-22 mwachs5 Remove last references to ”Instruction Supply”
f6ebde9 2017-02-22 Tim Newsome Move authentication to a serial protocol.
0f079c8 2017-02-22 Tim Newsome Reserve bit for per-hart reset.
f2c93ac 2017-02-22 Tim Newsome Clarify that dmactive resets authentication.
59154ac 2017-02-22 Tim Newsome Merge pull request #27 from asb/clarify reset
f5e7b1c 2017-02-22 Alex Bradbury Clarify that the halt state of all harts is maintained

through reset
3dfe8fd 2017-02-22 Tim Newsome More Debug Mode -¿ Halt Mode.
d29fc1f 2017-02-22 Tim Newsome Debug Mode -¿ Halt Mode
55d6030 2017-02-21 Tim Newsome Generate debug defines.h as part of normal make
b0e6a7f 2017-02-21 Tim Newsome Minor clarifications.
0f9885c 2017-02-20 Tim Newsome Various clarifications.
e443ab9 2017-02-15 Tim Newsome Merge pull request #25 from sifive/ctrl status
3b08e90 2017-02-15 Tim Newsome Merge pull request #24 from

sifive/sm diagram resumereq
0802d5a 2017-02-15 mwachs5 Use consistent ’Control and Status’ naming for CS

registers.
5accc7d 2017-02-15 Tim Newsome Change all the ”other” JTAG IRs to just reserved.
bcbd7da 2017-02-15 mwachs5 sm diagram: Show using resumereq bit to resume.
18f6e55 2017-02-14 Tim Newsome Introduce resumereq command, similar to haltreq.
fb40538 2017-02-14 Tim Newsome Merge pull request #22 from sifive/sb errors
4b62c40 2017-02-14 mwachs5 SystemBus: Clean up some formatting and error

specification notes.
0f346e4 2017-02-14 Tim Newsome Merge pull request #21 from

sifive/sm for quick access
bc97723 2017-02-14 mwachs5 quick-access: Update SM Diagram for Quick Access
d27066e 2017-02-14 Tim Newsome Clarify haltreq bit.
6f8ec43 2017-02-14 Tim Newsome Always generate long constants when required.
c6ac6bc 2017-02-13 Tim Newsome Include field descriptions in C header file.
b849213 2017-02-13 Tim Newsome Fix the build.
c82c62e 2017-02-12 Tim Newsome Merge pull request #20 from sifive/jtag ir minimum
1cf8033 2017-02-12 mwachs5 jtag: More clarifications
6203bd6 2017-02-12 Megan Wachs Update requirements– W GPRs Required
f2b43a7 2017-02-12 Megan Wachs Remove double ’the’
2c64ef1 2017-02-12 Megan Wachs Remove comma
f84abce 2017-02-12 Megan Wachs Whitespace edits and address come comments

76 RISC-V External Debug Support Version 0.13

7246b44 2017-02-12 Tim Newsome Merge pull request #19 from sifive/jtag dtm edits
23c2648 2017-02-11 mwachs5 jtag dtm: ask for clarification on TAP sharing.
7020d23 2017-02-11 mwachs5 jtag dtm: Clarifications, DBUS-¿DMI
292d49c 2017-02-11 Megan Wachs fix indentation
55ef8d6 2017-02-11 Tim Newsome Merge pull request #17 from sifive/prog buffer size
b879b86 2017-02-11 Megan Wachs Add missing period
bbe0521 2017-02-11 mwachs5 Make comments on program buffer size match the

address map.
4ceaa37 2017-02-11 mwachs5 Flesh out and edit the introduction/background Add

a description of use cases this spec has in mind, and
what it doesn’t cover.

cbf89d6 2017-02-11 Tim Newsome Rewrite Quick Access.
9115db1 2017-02-10 Tim Newsome Merge pull request #16 from sifive/re-

duce prog buffer size
170bff1 2017-02-10 Megan Wachs Allow size 4 for the program buffer
9d46077 2017-02-10 Tim Newsome Merge pull request #15 from sifive/dmactive
c911e6e 2017-02-10 Tim Newsome Clarify use of dmactive.
2ca296f 2017-02-09 Tim Newsome Reserve command register space for custom use.
e49666e 2017-02-09 Tim Newsome Clarify hart index change per Megan’s comments.
84865e9 2017-02-09 Tim Newsome Add header prefix for abstract commands.
2434f4f 2017-02-09 Tim Newsome Select harts by index instead of hart ID.
7bf112a 2017-02-09 Tim Newsome Generate correct headers for ¿32-bit registers.
7f0f09a 2017-02-08 Tim Newsome Reset dbus status to ”failure” to avoid confusion.
7b1803e 2017-02-08 Tim Newsome Merge pull request #13 from sifive/arg0 clarification
8b1c6f0 2017-02-08 Megan Wachs Fix line wrap issue
345c33f 2017-02-08 Megan Wachs Call out ”arg0” specifically.
9f080f5 2017-02-08 Megan Wachs Clarify ”arguments” to commands
259badd 2017-02-08 Tim Newsome Make haltsum/halt registers mandatory.
eb0f1d3 2017-02-07 Tim Newsome Allow for early abstract command failures.
bb49bd1 2017-02-07 Tim Newsome Clarify error handling a little.
3fc0a97 2017-02-07 Tim Newsome Explain when abstract data regs may be clobbered.
c37167e 2017-02-07 Tim Newsome Fix old language in description of halt registers.
6943c96 2017-02-07 Tim Newsome Generate more useful C header files from reg defs
d7a8045 2017-02-06 Tim Newsome Merge pull request #11 from sifive/sm diagram
8bef40e 2017-02-05 mwachs5 Merge remote-tracking branch ’origin/0.13’ into

sm diagram
98639df 2017-02-05 mwachs5 Include the SM Diagram as a figure. Also some minor

capitalization fixes.
a95e4c3 2017-02-05 mwachs5 Update State Machine diagram to show uncertainty

of halt bit during auto halt/resume.
ba76744 2017-02-05 Tim Newsome Combine loabits and hiabits.
02b1d92 2017-02-05 Tim Newsome DMI can get away with just 6 address bits.
35d6e33 2017-02-05 mwachs5 Update State machine diagram to show BUSY with-

out HALTED
f511b05 2017-02-04 Tim Newsome Clarify command busy bit.
a8e5ae7 2017-02-03 mwachs5 Merge remote-tracking branch ’origin/0.13’ into

sm diagram
d0f8961 2017-02-03 mwachs5 Update figures

RISC-V External Debug Support Version 0.13 77

e18a68d 2017-02-03 Tim Newsome Clarify prehalt/postresume failure.
ac3e2a9 2017-02-02 Tim Newsome Clarify abstract command failure behavior.
ce4baee 2017-02-02 Tim Newsome Add Quick Access section.
0490377 2017-02-02 Tim Newsome Add prehalt and postresume to reg command.
67515bd 2017-02-02 Tim Newsome Deal with a few minor TODOs.
96456fc 2017-02-02 Tim Newsome Turn register names into links.
317cd98 2017-02-02 Tim Newsome Explain what register access is required.
f3ad2f2 2017-02-01 Tim Newsome Revert Plain Exception implementation to be simple
a0ad281 2017-02-01 Tim Newsome execb -¿ preexec, execa -¿ postexec
1d4a2c3 2017-02-01 Tim Newsome Limit Program Buffer sizes to 0, 1, 8.
cc40815 2017-02-01 Tim Newsome Incorporate Po-wei’s feedback.
c8b45d6 2017-02-01 Tim Newsome Clarify how all autoexec bits work.
dbb1deb 2017-02-01 Tim Newsome Remove stale TODO.
c5f8f59 2017-02-01 Tim Newsome Explain why cmderr inhibits starting new commands.
5c69194 2017-02-01 Tim Newsome Fix editing error.
50f7c48 2017-02-01 Tim Newsome Remove empty hart info register.
781c68e 2017-02-01 Megan Wachs Update README.md
f46b32e 2017-02-01 mwachs5 Add a diagram of Abstract Command flow.
633bd63 2017-02-01 Tim Newsome Move Reading Order into About This Document
51ec4d1 2017-02-01 Tim Newsome Add reading order section.
03d20ad 2017-02-01 Tim Newsome autoexec0 applies to data0, not inst0.
c302353 2017-01-31 Tim Newsome Don’t rely on hart fetching instructions once.
2558c25 2017-01-31 Tim Newsome Change how exceptions in Halt Mode are handled.
a36ddce 2017-01-31 Tim Newsome Add size to abstract register command.
64de458 2017-01-31 Tim Newsome Detail bus master reads.
c08486f 2017-01-31 Megan Wachs reset: Add some comments (#5)
1558049 2017-01-30 Tim Newsome Automate Change Log.
51525a4 2017-01-29 Tim Newsome Update System Overview
7d39ac0 2017-01-29 Tim Newsome Update Supported Features.
9e7cbea 2017-01-29 Tim Newsome Update RISC-V Core section.
515188d 2017-01-29 Tim Newsome Update Hardware Implementations section.
4b19ed8 2017-01-29 mwachs5 system bus: be consistent and always call it ’System

Bus’. Even if some dislike the name, we should be
consistent and clear in the spec.

9ccef3d 2017-01-29 Tim Newsome Fleshed out some debugger implementation.
04b9176 2017-01-28 Tim Newsome Rename debug exception to breakpoint exception.
5ac4ea1 2017-01-27 Tim Newsome WIP on big update on instruction supply.
2d9c3e2 2017-01-27 Tim Newsome Reorganize dm registers.
de50ba8 2017-01-27 Tim Newsome Abstract command support is already addressed.
27cb0da 2017-01-26 Tim Newsome Merge pull request #4 from sifive/access renames
5085046 2017-01-26 mwachs5 Rename registers and fields like ’access’ that were

confusingly the same name.
10bbf6f 2017-01-26 Tim Newsome Fix #2: DM address space table
a05c582 2017-01-26 Tim Newsome Add debugger inspection as a feature.
4062681 2017-01-24 Tim Newsome Add publish target.
5c8bb83 2017-01-24 Tim Newsome Clarify use of data registers.
1504da6 2017-01-24 Tim Newsome Replace manual date with automatic git hash/date.
997f2a0 2017-01-23 Tim Newsome Deal with unsupported abstract commands.

78 RISC-V External Debug Support Version 0.13

cb6f2b8 2017-01-23 Tim Newsome Renumber registers to prevent duplicates.
8b4db96 2017-01-23 Tim Newsome Don’t print out addresses if they’re not provided.
b00cd21 2017-01-23 Tim Newsome Add an abstract command.
675b556 2017-01-23 Tim Newsome Reorganize DM bits into functional group regs.
5fc7512 2017-01-23 Tim Newsome Remove bits 33:32 from sbdata[23].
ceb5d66 2017-01-20 Tim Newsome Starting point for a comprehensive spec

	Preface
	Introduction
	Terminology
	About This Document
	Structure
	Register Definition Format

	Background
	Supported Features

	System Overview
	Debug Module (DM)
	Debug Module Interface (DMI)
	Reset Control
	Selecting Harts
	Selecting a Single Hart
	Selecting Multiple Harts

	Halt Control
	Abstract Commands
	Abstract Command Listing

	Program Buffer
	System Bus Access
	Quick Access
	Security
	Serial Ports
	Debug Module DMI Registers

	RISC-V Debug
	Debug Mode
	Load-Reserved/Store-Conditional Instructions
	Reset
	Core Debug Registers
	Virtual Debug Registers

	Trigger Module
	Trigger Registers

	Debug Transport Module (DTM)
	JTAG Debug Transport Module
	Background
	JTAG Registers
	JTAG Connector

	Hardware Implementations
	Abstract Command Based
	Execution Based

	Debugger Implementation
	Debug Module Interface Access
	Main Loop
	Halting
	Accessing Registers
	Reading Memory
	Writing Memory
	Running
	Single Step
	Handling Exceptions
	Quick Access

	Trace Module
	Trace Data Format
	Trace Events
	Synchronization
	Trace Registers

	Future Ideas
	Change Log

