

AN4910 Application note

Data exchange between wired (I²C) and wireless (RF ISO 15693) using fast transfer mode supported by ST25DV-I2C Series

Introduction

The ST25DV-I2C Series are dual EEPROM devices designed to be accessed via two different interfaces: a wired I²C interface and a standard contactless ISO 15693 RFID interface.

One of the features offered by the ST25DV-I2C Series is fast data transfer between a handheld controller (e.g. a phone or an RF reader) and an embedded microcontroller managing a local application.

In this mode, ST25DV-I2C Series act as a mailbox accessed successively by the two interfaces that put in or get a message to exchange data. The mailbox can store up to 256 data bytes.

The purpose of this document is to present the way to activate, control and perform such exchanges using both interfaces to operate.

This application note applies to the ST25DV-I2C Series Dynamic NFC Tags and is now referred to as ST25DV-I2C.

This application note applies to the products listed in *Table 1*.

Product type	RPN
	ST25DV04K
	ST25DV16K
	ST25DV64K
ST25DV-I2C Series	ST25DV04KC
	ST25DV16KC
	ST25DV64KC

Table 1. Applicable products

Contents

1	Acro	nyms and notational conventions	5
	1.1	Product family denomination	5
	1.2	Binary number representation	5
	1.3	Hexadecimal number representation	5
	1.4	Decimal number representation 6	3
2	How	to prepare for fast transfer mode7	,
	2.1	RF sequence to prepare for fast transfer mode)
	2.2	I ² C sequence to prepare for fast transfer mode	l
3	How	to initiate the fast transfer mode14	ł
	3.1	RF sequence to initiate FTM 15	5
	3.2	I ² C sequence to initiate FTM 15	5
4	How	to be informed of fast transfer mode progress	;
5	Cont	rol and execution of the fast transfer mode	,
	5.1	FTM transmission from RF to I2C 18	3
	5.2	FTM transmission from I ² C to RF 20)
6	How	to disable fast transfer mode	5
	6.1	RF sequence to reset FTM 26	3
	6.2	I ² C sequence to reset FTM 27	7
7	Fast	transfer mode efficiency	}
8	Exam	nple)
9	Revis	sion history)

List of tables

Table 1.	Applicable products	. 1
Table 2.	List of acronyms	
Table 3.	RF sequence for FTM preparation (ST25DVxxK)	. 9
Table 4.	RF sequence for FTM preparation (ST25DVxxKC)	
Table 5.	I ² C sequence for FTM preparation (ST25DVxxK)	11
Table 6.	I ² C sequence for FTM preparation (ST25DVxxKC)	12
Table 7.	RF sequence to initiate FTM.	
Table 8.	I ² C sequence to initiate FTM	15
Table 9.	FTM transmission from RF to I2C: RF side	
Table 10.	FTM transmission from RF to I2C: I2C side	
Table 11.	FTM transmission from I ² C to RF: RF side	
Table 12.	FTM transmission from I ² C to RF: RF side, full message read	
Table 13.	FTM transmission from I2C to RF: I2C side	24
Table 14.	Reset MB_EN in dynamic register MB_CTRL_Dyn (RF sequence)	26
Table 15.	Reset MB_MODE in system register FTM (RF sequence)	
Table 16.	Reset MB_EN in dynamic register MB_CTRL_Dyn (I ² C sequence)	
Table 17.	Reset MB_MODE in System (I ² C sequence)	27
Table 18.	Document revision history	30

List of figures

Figure 1.	FTM initialization
Figure 2.	FTM initiation
	FTM control and execution
Figure 4.	FTM transmission from RF to I2C
	Capture example of FTM transmission from RF to I2C
Figure 6.	FTM transmission from I ² C to RF
•	Capture example of FTM transmission from I2C to RF
Figure 8.	FTM reset

1

Acronyms and notational conventions

Acronym	Definition		
CRC	Cyclic redundancy check		
EEPROM	Electrically-erasable programmable read-only memory		
EOF	End of frame		
FTM	Fast transfer mode		
I ² C	Inter-integrated circuit		
ISO/IEC	International organization for standardization / International electrotechnical commission		
IT	Interrupt		
R	Read		
RF	Radio frequency		
RFID	Radio frequency identification		
RO	Read only		
R/W	Read / Write		
SOF	Start of frame		
W	Write		

Table 2. List of acronyms

The following conventions and notations apply in this document unless otherwise stated.

1.1 **Product family denomination**

In this document, ST25DVxxK is referring to ST25DV04K, ST25DV16K and ST25DV64K products. ST25DVxxKC is referring to ST25DV04KC ST25DV16KC and ST25DV64KC products.

1.2 Binary number representation

Binary numbers are represented by strings of 0 and 1 digits, with the most significant bit (MSB) on the left, the least significant bit (LSB) on the right, and a 'b' suffix added at the end.

Example: 11110101b

1.3 Hexadecimal number representation

Hexadecimal numbers are represented by strings of numbers from 0 to 9 and letters from A to F, and an 'h' suffix added at the end. The most significant byte (MSB) is shown on the left and the least significant byte (LSB) on the right.

AN4910 Rev 3

Example: F5h

1.4 Decimal number representation

Decimal numbers are represented without any trailing character. Example: 245

2 How to prepare for fast transfer mode

By default, the FTM feature of ST25DV-I2C is disabled (ST25DVxxK: MB_MODE bit 0 of register MB_MODE is set to 0b, ST25DVxxKC: MB_MODE bit 0 of register FTM is set to 0b) so that data can be written in user memory.

A requirement to allow FTM usage is to set MB_MODE to 1b. This operation can be done via the RF or I^2C interface.

Initially, a super user has to grant access to the system memory where the MB_MODE bit is located.

A secure I^2C session can read register $I2C_SSO_Dyn$ to check that a correct I^2C password was presented.

Other useful static register configurations can be done in this session to optimize future FTM operations:

- RF_PUT_MSG and RF_GET_MSG bits (ST25DVxxK GPO register bits 4 and 5, ST25DVxxKC GPO1 register bits 5 and 6): allows raising dedicated interrupts.
 IT_TIME (ST25DVxxK IT_TIME register bits [2:0], ST25DVxxKC GPO2 register bits [4:2]): allows configuring pulse duration.
- MB_WDG (ST25DVxxK MB_WDG register bits [2:0], ST25DVxxKC FTM register bits [3:1]): defines the duration after which the message in the mailbox could be overwritten (a value of 00h corresponds to an infinite duration. In that case, only a get or a reset of the FTM allows changing the content of the mailbox)

Initialization via RF	Initialization via I2C
RF_ON	VCC_ON
Present system password (pwd 0)	Present I2C password (read I2CSS)
Enable GPO interrupts	Enable GPO interrupts
ST25DVxxK: write system GPO B0h	ST25DVxxK: write system GPO B0h
ST25DVxxKC: write system GPO1 61h	ST25DVxxKC: write system GPO1 61h
(read GPO/GPO1)	(read GPO/GPO1)
Configure IT pulse (37.65 to 302us)	Configure IT pulse (37.65 to 302us)
ST25DVxxK: write system IT_TIME 00h to 07h	ST25DVxxK: write system IT_TIME 00h to 07h
ST25DVxxKC: write system GPO2 00h to 1Ch	ST25DVxxKC: write system GPO2 00h to 1Ch
(read IT_TIME/GPO2)	(read IT_TIME/GPO2)
ST25DVxxK only	ST25DVxxK only
Configure watchdog (disabled, 30ms to 2s)	Configure watchdog (disabled, 30ms to 2s)
write system MB_WDG 00h to 07h	write system MB_WDG 00h to 07h
(read MB_WDG)	(read MB_WDG)
ST25DVxxK only	ST25DVxxK only
Enable FTM	Enable FTM
write system MB_MODE 01h	write system MB_MODE 01h
(read MB_MODE)	(read MB_MODE)
ST25DVxxKC only	ST25DVxxKC only
Configure watchdog (disabled, 30ms to 2s)	Configure watchdog (disabled, 30ms to 2s)
and enable FTM	and enable FTM
write system FTM 01h to 0Fh	write system FTM 01h to 0Fh
(read FTM)	(read FTM)

Figure 1. FTM initialization

2.1 RF sequence to prepare for fast transfer mode

The following table details the RF sequence to be followed to prepare for FTM:

Command flow	Request frame	Response	Comment
RF Power ON	-	-	-
RF Present System Password (0)	02 B3 02 00 00 00 00 00 00 00 00 00 00 00h	00h	Default ST25DV-I2C password is 00 00 00 00 00 00 00 00 00 00 00 00 00
RF Write static register GPO	02 A1 02 00 B0 h	00h	B0h: GPO enabled, RFPutMsg enabled, RFGetMsg enabled
RF Read static register GPO (Optional)	02 A0 02 00h	00 B0h	-
RF Write static register IT_TIME (Optional)	02 A1 02 01 03 h	00h	03h: Interruption duration 188 μs
RF Read static register IT_TIME (Optional)	02 A0 02 01h	00 03h	-
RF Write static register MB_WDG (Optional)	02 A1 02 0E 07h	00h	07h: 2s duration of mailbox Watch Dog
RF Read static register MB_WDG (Optional)	02 A0 02 0Eh	00 07h	-
RF Write static register MB_MODE	02 A1 02 0D 01 h	00h	01h: FTM mode allowed
RF Read static register MB_MODE (Optional)	02 A0 02 0Dh	00 01h	-

Note: Words in bold are shown for the easiness of reading only.

Command flow	Request frame	Response	Comment
RF Power ON	-	-	-
RF Present System Password (0)	02 B3 02 00 00 00 00 00 00 00 00 00 00h	00h	Default ST25DV-I2C password is 00 00 00 00 00 00 00 00 00 00 00 00 00
RF Write static register GPO1	02 A1 02 00 61 h	00h	61h: GPO enabled, RFPutMsg enabled, RFGetMsg enabled
RF Read static register GPO1 (Optional)	02 A0 02 00h	00 61h	-
RF Write static register GPO2	02 A1 02 01 0C h	00h	0Ch: GPO interrupt duration 188 μs
RF Read static register GPO2 (Optional)	02 A0 02 01h	00 0Ch	-
RF Write static register FTM (Optional)	02 A1 02 0D 0F h	00h	0Fh: 0Fh: 2s duration of mailbox Watch, FTM allowed
RF Read static register FTM (Optional)	02 A0 02 0Dh	00 0Fh	-

Table 4. RF sequence for FTM preparation (ST25DVxxKC)

Note: Words in bold are shown for the easiness of reading only.

Note:RF operations are reported seen from RF transceiver.Bytes of the Request frame column represent the commands code sent to ST25DV-I2C.Bytes of the Response column represent the data returned by ST25DV-I2C.CRC bytes are not reported.Words in bold are shown for the easiness of reading only.

2.2 I²C sequence to prepare for fast transfer mode

Table 5 details the I^2C sequence to be followed to prepare for FTM using the following abbreviations:

- **Start**: transmit I²C start
- Stop: transmit I²C Stop
- **sxx**: send byte xx
- **sAck**: send Acknowledge
- **sNoack**: send No acknowledge
- rdd: read byte dd
- rAck: read Acknowledge
- rNoack: read No acknowledge
- **sA6**: ST25DV-I2C device select for writing in user memory
- sA7: ST25DV-I2C device select for reading in user memory
- **SAE**: ST25DV-I2C device select for writing in system memory
- **sAF**: ST25DV-I2C device select for reading in system memory

Table 5. I²C sequence for FTM preparation (ST25DVxxK)

Command flow	Request/Response frame	Polling (optional)	Comment
V _{CC} ON	-	-	DC power
I ² C Present Password	Start sAE rAck s09 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s09 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00	Start sAE rAck	Default ST25DV-I2C I ² C password is 00 00 00 00 00 00 00 00 00h (Present Password is immediate)
I ² C Read dynamic register I2C_SSO_Dyn (optional)	Start sA6 rAck s20 rAck s04 rAck Start sA7 rAck r01 sNoack Stop	-	Confirm that access rights are granted
I ² C Write System GPO	Start sAE rAck s00 rAck s00 rAck sB0 rAck Stop	Start sAE rNoack Start sAE rNoack Start sAE rAck	B0h: GPO enabled, RFPutMsg enabled, RFGetMsg enabled
I ² C Read System GPO (optional)	Start sAE rAck s00 rAck s00 rAck Start sAF rAck rB0 sNoack Stop	-	-
I ² C Write System IT_TIME	Start sAE rAck s00 rAck s01 rAck s03 rAck Stop	Start sAE rNoack Start sAE rNoack Start sAE rAck	03h: GPO interrupt duration 188 μs
I ² C Read System IT_TIME (optional)	Start sAE rAck s00 rAck s01 rAck Start sAF rAck r03 sNoack Stop	-	-

Command flow	Request/Response frame	Polling (optional)	Comment
I ² C Write System MB_WDG	Start sAE rAck s00 rAck s0E rAck <i>s07</i> rAck Stop	Start sAE rNoack Start sAE rNoack Start sAE rAck	07h: 2 s duration of mailbox Warchdog
I ² C Read System MB_WDG (optional)	Start sAE rAck s00 rAck s0E rAck Start sAF rAck r07 sNoack Stop	-	-
I ² C Write System MB_MODE	Start sAE rAck s00 rAck s0D rAck s01 rAck Stop	Start sAE rNoack Start sAE rNoack Start sAE rAck	01h: FTM allowed
I ² C Read System MB_MODE (optional)	Start sAE rAck s00 rAck s0D rAck Start sAF rAck r01 sNoack Stop	-	-

Table 5. I²C sequence for FTM preparation (ST25DVxxK) (continued)

Note: Words in bold are shown for the easiness of reading only.

Table 6. I ² C sequence for FTM preparation (ST25DVxxKC)			
Command flow	Request/Response frame	Polling (optional)	Comment
V _{CC} ON	-	-	DC power
I ² C Present Password	Start sAE rAck s09 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s09 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00 rAck s00	Start sAE rAck	Default ST25DV-I2C I ² C password is 00 00 00 00 00 00 00 00 00h (Present Password is immediate)
I ² C Read dynamic register I2C_SSO_Dyn (optional)	Start sA6 rAck s20 rAck s04 rAck Start sA7 rAck r01 sNoack Stop	-	Confirm that access rights are granted
I ² C Write System GPO1	Start sAE rAck s00 rAck s00 rAck s61 rAck Stop	Start sAE rNoack Start sAE rNoack Start sAE rAck	B0h: GPO enabled, RFPutMsg enabled, RFGetMsg enabled
I ² C Read System GPO1 (optional)	Start sAE rAck s00 rAck s00 rAck Start sAF rAck r61 sNoack Stop	-	-
I ² C Write System GP02	Start sAE rAck s00 rAck s01 rAck s0C rAck Stop	Start sAE rNoack Start sAE rNoack Start sAE rAck	0Ch: GPO interrupt duration 188 μs

Command flow	Request/Response frame	Polling (optional)	Comment
I ² C Read System GPO2 (optional)	Start sAE rAck s00 rAck s01 rAck Start sAF rAck r0C sNoack Stop	-	-
I ² C Write System FTM	Start sAE rAck s00 rAck s0D rAck s0F rAck Stop	Start sAE rNoack Start sAE rNoack Start sAE rAck	0Fh: 2 s duration of mailbox Warchdog
I ² C Read System FTM (optional)	Start sAE rAck s00 rAck s0E rAck Start sAF rAck r07 sNoack Stop	-	-

Table 6. I²C sequence for FTM preparation (ST25DVxxKC) (continued)

Note: Words in bold are shown for the easiness of reading only.

Note: I²C operations are reported seen from the master's side. Words in bold are shown for the easiness of reading only.

Note: It is assumed that I^2C slave address of ST25DVxxKC is set to AE/AF for system memory.

3 How to initiate the fast transfer mode

Fast transfer mode requires a valid DC supply which could be checked by reading Dynamic register EH_CTRL_Dyn (bit b3).

FTM can be temporarily enabled or disabled by using the MB_CTRL_Dyn dynamic register and by setting the MB_EN bit to 1b for setting or to 0b for resetting. The MB_EN bit can only be set if MB_MODE was previously set to 1b during the FTM setting phase.

Once FTM is set, it is possible to check the content of the mailbox.

When FTM is reset, the access to dynamic registers, message length or message content, returns the following:

- In RF Read MB_LEN_Dyn & read message returns error code 01 0Fh.
- In I²C message Length is set to "00" and message content reads FFh.

It is assumed in following figure and tables that the FTM mode as previously been initialized correctly. After initiation:

- The mailbox is empty
- The message length is null
- Read access returns
 - An error in RF
 - FFh in I²C

Initiate via RF	Initiate via I2C
RF_ON	VCC_ON
(Optional) Check VCC_ON Read EH_CTRL_Dyn	Enable FTM Write MB_CTRL_Dyn 01h (MB_EN=1)
Enable FTM Write MB_CTRL_Dyn 01h (MB_EN=1)	(Optional) Read MB_CTRL_Dyn (01h MB_EN=1)
(Optional)	(Optional) Read MB_LEN_Dyn (00h no message)
Read MB_CTRL_Dyn (01h MB_EN=1) (Optional)	(Optional) Read message (all FFh no message)
Read MB_LEN_Dyn (00h no message)	
(Optional) Read message (01 0Fh error)	

Figure 2. FTM initiation

3.1 RF sequence to initiate FTM

Command flow	Request frame	Response	Comment
RF Power ON	-	-	-
RF Read dynamic register EH_CTRL_Dyn (optional)	02 AD 02 02 h	00 0Ch	0Ch: FIELD_ON, VCC_ON
RF Write dynamic Register MB_CTRL_Dyn	02 AE 02 0D 01 h	00h	Enable FTM
RF Read dynamic register MB_CTRL_Dyn (optional)	02 AD 02 0D h	00 01h	FTM enabled
RF Read dynamic register MB_LEN_Dyn (optional)	02 AB 02h	00 00h	Mailbox empty
RF Read message (optional)	02 AC 02 00 00 h	01 0Fh	no message

Table 7. RF sequence to initiate FTM

Note: Words in bold are shown for the easiness of reading only.

3.2 I²C sequence to initiate FTM

The codes used in Table 8 and Table 9 below are described in Section 2.2 on page 11.

Command flow	Request/Response frame	Polling (optional)	Comment
VCC_ON	-	-	DC Power ON
I ² C Write dynamic register MB_CTRL_Dyn	Start sA6 rAck s20 rAck s06 rAck s01 rAck Stop	-	Enable FTM
I ² C Read dynamic register MB_CTRL_Dyn (optional)	Start sA6 rAck s20 rAck s06 rAck Start sA7 rAck r01 sNoack Stop	-	FTM enabled
I ² C Read dynamic register MB_LEN_Dyn (optional)	Start sA6 rAck s20 rAck s07 rAck Start sA7 rAck r00 sNoack Stop	-	Mailbox empty
l ² C Read message (8 bytes as example) (optional)	Start sA6 rAck s20 rAck s08 rAck Start sA7 rAck rFF sAck rFF sAck rFF sAck rFF sAck rFF sAck rFF sNoack Stop	-	No message

Table 8. I²C sequence to initiate FTM

Note: Words in bold are shown for the easiness of reading only.

Note: It is assumed that l^2C slave address of ST25DVxxKC is set to A6/A7 for user memory.

4 How to be informed of fast transfer mode progress

The MB_CTRL_Dyn dynamic register contains most of the information to understand the state of the FTM. It tells if a message is present in the mailbox, which interface has put this message, and if the addressee has got the message or missed it.

- HOST_PUT_MSG and RF_PUT_MSG bits
 - HOST_PUT_MSG and RF_PUT_MSG indicate which interface has put the message in the mailbox. When set, it is only possible to verify or to get the message; It is not possible to overwrite it.
 - HOST_PUT_MSG and RF_PUT_MSG are reset after the addressee has got the message or missed it or after MB_CTRL_Dyn has been reset.
- HOST_MISS_MSG and RF_MISS_MSG bits
 - HOST_MISS_MSG and RF_MISS_MSG are set after the watchdog's time limit is exceeded. The addressee interface has not got the message.
 - Afterwards both interfaces are free to read or overwrite the message.
 - HOST_MISS_MSG and RF_MISS_MSG are reset when resetting MB_CTRL_Dyn or when MB_CTRL_Dyn is read by the interface that missed the message.
- HOST_CURRENT_MSG and RF_CURRENT_MSG bits
 - HOST_CURRENT_MSG and RF_CURRENT_MSG are set when the addressee interface Gets or misses the message. CurrentMsg indicates the origin of the message located in the mailbox. A new message can be put in the mailbox.
 - HOST_CURRENT_MSG and RF_CURRENT_MSG bits are reset when a new message is Put in the mailbox by the other interface or when resetting MB_CTRL_Dyn.

Note: RF handset must poll the MB_CTRL_Dyn dynamic register to detect a new event affecting FTM.

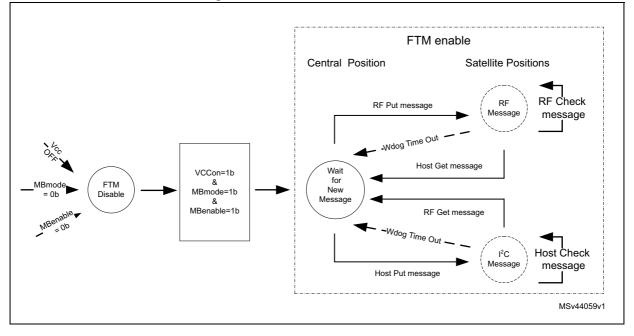
Wired device can be directly informed by Interrupt. For adapted GPO setting a new RF event affecting the mailbox will generate an Interruption pulse on the GPO pin. The Host can read bit b5 (RF_PUT_MSG) or bit b6 (RF_GET_MSG) of the IT_STS_Dyn register. Those bits are set according to the origin of the IT.

Once read, IT_STS_Dyn is reset, ready to indicate a new upcoming event.

5 Control and execution of the fast transfer mode

Only one message is resident in the mailbox. It is loaded as a first-come first-served basis, whether from RF or from I^2C .

After putting a message in the mailbox memory, it is possible to check it but it is not possible to modify it.


Messages put in the mailbox by one interface must be taken by the other one in order for the mailbox to become ready for a new cycle

When using a finite MB watchdog duration, the mailbox becomes available again after the watchdog times out. The message in the mailbox then becomes accessible and can be overwritten by any of the two interfaces.

When using an infinite watchdog duration, if you need to modify your message, you must reset the FTM first. The easier way is to set MB_EN bit to 0.

DC supply is mandatory to run in FTM and will guarantee the integrity of messages present in the mailbox. After Putting a new message, the previous one is discarded. The length is temporarily set to zero, then the new message is loaded and the new length is set upon the successful completion of the Put command.

It is not recommended to use Energy Harvesting to power FTM and at the same time supply power to the application circuit.

Figure 3. FTM control and execution

5.1 FTM transmission from RF to I^2C

The following sequence lists the main steps of a FTM transmission from RF to I^2C . It is further described in *Figure 4* and detailed in *Table 9* and *Table 10*.

- 1. RF Put message
- 2. Host detect event
- 3. Host get message
- 4. RF poll for message being read by host
- 5. Repeat from step 1 until all data are transmitted

It is assumed in following figure and tables that the FTM mode as previously been initialized and initiated correctly.

FTM transmission from RF to I2C		
RF_ON)	
Write message (RFMsg data)		GIT
		Read IT_STS_Dyn (20h RF_PUT_MSG)
Polling Read MB_CTRL_Dyn]	(Optional) Read MB_CTRL_Dyn (85h RF_CURRENT_MSG, RF_PUT_MSG)
(85h RF_CURRENT_MSG, RF_PUT_MSG)		Read message length (RFMsg length-1)
	_	Read message (RFMsg data)
Polling Read MB_CTRL_Dyn (81h RF_CURRENT_MSG)		
Write message (RFMsg data)	GPO RF_PUT_MS	G IT
		Read IT_STS_Dyn (20h RF_PUT_MSG)

Figure 4. FTM transmission from RF to I²C

Command flow	Request frame	Response	Comment	
RF Power ON	-	-	-	
RF Write message (8 Bytes message as example)	02 AA 02 07 11 22 33 44 55 66 77 88h	00h	RF put message GPO interrupt RF_PUT_MSG triggered	
RF Read dynamic register MB_CTRL_Dyn	02 AD 02 0D h	00 85h ⁽¹⁾	Polling 85h: RF_CURRENT_MSG, RF_PUT_MSG	
I ² C read message				
RF Read dynamic register MB_CTRL_Dyn	02 AD 02 0D h	00 81h	Polling 81h: RF_CURRENT_MSG, Mailbox is ready for a new sequence	
RF Write message (next 8 Bytes message as example)	02 AA 02 07 09 AA BB CC DD EE FFh	00h	RF put message GPO interrupt RF_PUT_MSG triggered	
Continue until all data are transmitted				

Table 9. FTM transmission from RF to I²C: RF side

1. This command can possibly be answered with error 01 0Fh or not answered if I^2C is busy reading the message.

Note: Words in bold are shown for the easiness of reading only.

Command flow	Request/Response frame	Polling (optional)	Comment			
	RF write message					
Interrupt received	-	-	GPO RF_PUT_MSG interrupt			
I ² C Read dynamic register IT_STS_Dyn, MB_CTRL_Dyn, MB_LEN_Dyn	Start sA6 rAck s20 rAck s05 rAck Start sA7 rAck r20 sAck r85 sAck r07 sNoack Stop	-	20h: RF_PUT_MSG 85h: RF_CURRENT_MSG, RF_PUT_MSG 07h: 8 Byte message Message data			
	I ² C read message					
I ² C read message	Start sA6 rAck s20 rAck s08 rAck Start sA7 rAck r11 sAck r22 sAck r33 sAck r44 sAck r55 sAck r66 sAck r77 sAck r88 sNoack Stop	-	8 Bytes message			
Read for next message interrupt						

Table 10. FTM transmission from RF to I²C: I²C side

Note: Words in bold are shown for the easiness of reading only.

As shown in Table 10, the I²C side can be optimized by reading sequentially in one command the dynamics registers (and eventually the mailbox content).

Figure 5. Capture example of FTM transmission from RF to I²C

GPO RF_		
RF write message (256 Bytes)	RF MB_CTRL_Dyn polling	RF write message
	I2C read dyn registers and message	
	, , ,	

5.2 FTM transmission from I^2C to RF

The following sequence lists the main steps of a FTM transmission from I^2C to RF. It is further described in *Figure 6* and detailed in subsequent tables from *Table 11* and *Table 13*.

- 1. Host puts message
- 2. RF polls MB_CTRL_Dyn
- 3. RF detects host message and gets it
- 4. Host gets message
- 5. Host detects RF get message event
- 6. Repeat from step 1 until all data are transmitted

It is assumed in following figure and tables that the FTM mode as previously been initialized and initiated correctly

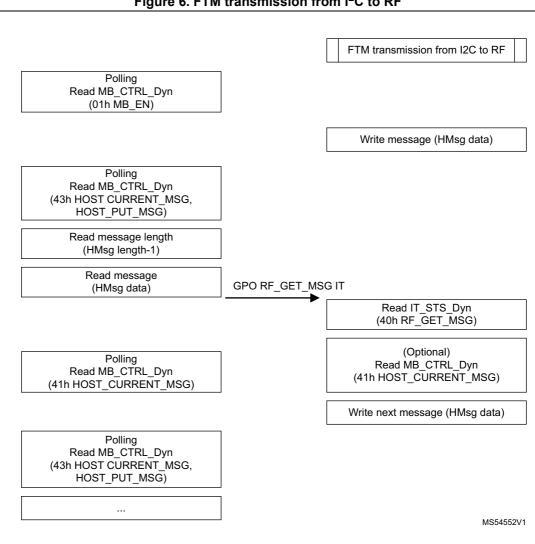


Figure 6. FTM transmission from I²C to RF

Command flow	Request frame	Response	Comment
RF Power ON	-	-	-
RF Read dynamic register MB_CTRL_Dyn	02 AD 02 0D h	00 01h ⁽¹⁾	Polling 01h: MB_EN
	l ² C write n	nessage	
RF Read dynamic register MB_CTRL_Dyn	02 AD 02 0D h	00 43h ⁽¹⁾	Polling 43h: HOST_CURRENT_MSG, HOST_PUT_MSG
RF Read dynamic register MB_LEN_Dyn	02 AB 02h	00 07h	07h: 8 Bytes message Message data
RF Read message (8 bytes starting byte 00)	02 AC 02 00 07h	00 11 22 33 44 55 66 77 88h	8 Bytes message
RF Read dynamic register MB_CTRL_Dyn	02 AD 02 0D h	00 41h ⁽¹⁾	Polling 41h: HOST_CURRENT_MSG,
Continue until all data are transmitted			

Table 11. FTM transmission from I²C to RF: RF side

1. This command can possibly be answered with error 01 0Fh or not answered if I^2C is busy reading the message.

Note: Words in bold are shown for the easiness of reading only.

RF side can be optimized by skipping the read of message length and setting 00h in the "Number of bytes" filed of the Read Message command. By setting 00h in number of bytes to read by the Read Message command, ST25DV-I2C automatically read the entire message. This is illustrated in *Table 12*.

Command flow	Request frame	Response	Comment			
RF Power ON	-	-	-			
RF Read dynamic register MB_CTRL_Dyn	02 AD 02 0D h	00 01h ⁽¹⁾	Polling 01h: MB_EN			
	I ² C write message					
RF Read dynamic register MB_CTRL_Dyn	02 AD 02 0D h	00 43h ⁽¹⁾	Polling 43h: HOST_CURRENT_MSG, HOST_PUT_MSG			
RF Read message (full message starting byte 00)	02 AC 02 00 00 h	00 11 22 33 44 55 66 77 88h	8 Bytes message			
RF Read dynamic register MB_CTRL_Dyn	02 AD 02 0D h	00 41h ⁽¹⁾	Polling 41h: HOST_CURRENT_MSG,			
Ready to receive next transmission						

Table 12. FTM transmission from I²C to RF: RF side, full message read

1. This command can possibly be answered with error 01 0Fh or not answered if I^2C is busy reading the message.

Note: Words in bold are shown for the easiness of reading only.

Command flow	Request/Response frame	Polling (optional)	Comment		
I ² C Write message	Start sA6 rAck s20 rAck s08 rAck s11 rAck s22 rAck s33 rAck s44 rAck s55 rAck s66 rAck s77 rAck s88 rAck Stop	-	8 Bytes message		
	RF read m	iessage			
Interrupt received	-	-	GPO RF_GET_MSG interrupt		
I ² C Read dynamic register IT_STS_Dyn, MB_CTRL_Dyn	Start sA6 rAck s20 rAck s05 rAck Start sA7 rAck r40 sAck r41 sNoack Stop	-	40h: RF_GET_MSG 41h: HOST_CURRENT_MSG		
	I ² C read message				
I ² C Write next message	Start sA6 rAck s20 rAck s08 rAck s99 rAck sAA rAck sBB rAck sCC rAck sDD rAck sEE rAck sFF rAck s00 rAck Stop	-	8 Bytes message		
Read for next message interrupt					

Table 13. FTM transmission from I^2C to RF: I^2C side

Note: Words in bold are shown for the easiness of reading only.

Figure 7. Capture example of FTM transmission from I^2C to RF

			GPO RF_GET_MSG IT
	RF MB_CRTL_Dyn polling	RF read message (256 Bytes)	
I2C write me	ssage (256 Bytes)		I2C read dynamic registers

Γ

6 How to disable fast transfer mode

There are three ways to stop FTM:

- 1. The faster way is to drive the MB_EN dynamic bit to 0b. Return to FTM will be easy by driving MB_EN back to 1b.
- 2. The second way is to set the MB_MODE system bit to 0b, which requires system access rights but will protect from an unauthorized FTM usage.
- 3. Finally, switching off DC supply will reset automatically MB_EN to 0b.

Note: Removing the RF field will not affect mailbox content as long as the chip is powered.

When using an infinite watchdog duration, FTM must be reset prior any message modification can be applied. The easier way is to reset MB_EN to 0.

Figure 8 summarizes the different ways to reset FTM which are further detailed in *Section 6.1* and *Section 6.2*.

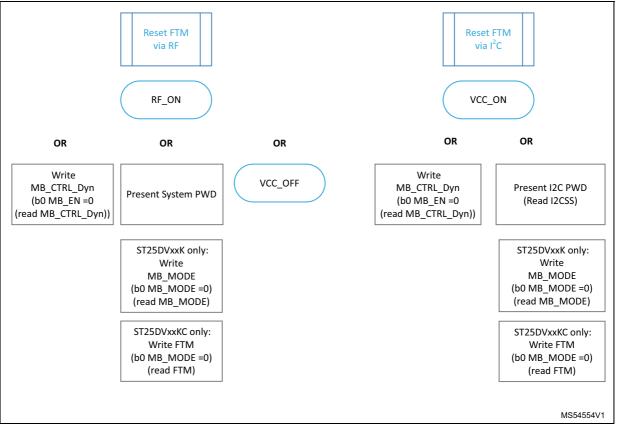


Figure 8. FTM reset

6.1 **RF** sequence to reset FTM

1. Reset MB_EN in dynamic register MB_CTRL_Dyn

Table 14. Reset MB_EN in dynamic register MB_CTRL_Dyn (RF sequence)

Command flow	Request frame	Response	Comment
RF Power ON	-	-	-
RF Write dynamic register MB_CTRL_Dyn	02 AE 02 0D 00h	00h	Disable FTM

Note: Words in bold are shown for the easiness of reading only.

2. Reset MB_MODE in System

Table 15. Reset MB_MODE in system register FTM (RF sequence)

Command flow	Request frame	Response	Comment
RF Present System Password (0)	02 B3 02 00 00 00 00 00 00 00 00 00 00 00h	00h	Default ST25DV-I2C password is 00 00 00 00 00 00 00 00 00h
RF Write static register ST25DVxxK: MB_MODE ST25DVxxKC: FTM	02 A1 02 0D 00h	00h	00h: MB_MODE Disable
RF Read static register ST25DVxxK: MB_MODE ST25DVxxKC: FTM	02 A0 02 0Dh	00 00h	Optional

Note: Words in bold are shown for the easiness of reading only.

3. VCC Power OFF

6.2 I²C sequence to reset FTM

1. Reset MB_EN in dynamic register MB_CTRL_Dyn

Table 16. Reset MB_EN in dynamic register MB_CTRL_Dyn (I²C sequence)

Command flow	Request/Response frame	Polling (optional)	Comment
Vcc_ON	-	-	DC Power ON
I ² C Write dynamic register MB_CTRL_Dyn	Start sA6 rAck s20 rAck s06 rAck s00 rAck Stop	-	Disable FTM
I ² C Read dynamic register MB_CTRL_Dyn	Start sA6 rAck s20 rAck s06 rAck Start sA7 rAck r00 sNoack Stop	-	Disable FTM

Note: Words in bold are shown for the easiness of reading only.

2. Reset MB_MODE in System

Polling Command flow Request/Response frame Comment (optional) Start sAE rAck s09 rAck s00 rAck s00 rAck Default value on ST25DVs00 rAck s00 rAck s00 Start sAE rNoack I2C delivery rAck s00 rAck s00 rAck I²C Present System Start sAE rNoack 00 00 00 00 00 00 00 00 00h s00 rAck s00 rAck s09 Password rAck s00 rAck s00 rAck Present Password is Start sAE rAck s00 rAck s00 rAck s00 immediate rAck s00 rAck s00 rAck s00 rAck Stop Start sA6 rAck To confirm that access I²C Read dynamic register s20 rAck s04 rAck rights are granted I2C_SSO_Dyn Start sA7 rAck r01 sNoack (optional) Stop Start sAE rNoack Start sAE rAck I²C Write static register Start sAE rNoack ST25DVxxK: MB MODE Reset to 00h s00 rAck s0D rAck s00 ST25DVxxKC: FTM rAck Stop Start sAE rAck Start sAE rAck I²C Read static register s00 rAck s0D rAck ST25DVxxK: MB_MODE Optional

Table 17. Reset MB_MODE in System (I²C sequence)

Note: Words in bold are shown for the easiness of reading only.

Stop

Start sAF rAck r00 sNoack

ST25DVxxKC: FTM

7 Fast transfer mode efficiency

The efficiency of FTM is mostly driven by the application software rather than by pure ST25DV-I2C performances.

The I²C and RF interfaces are not equivalent. I²C can run up to 1 Mbit/s while RF performs only at 26 Kbit/s. When supported by RF handset, ST25DV-I2C can double the speed of RF uplink to 52 Kbit/s using proprietary fast commands set.

ST25DV-I2C offers a large buffer size of 256 bytes which minimizes the cost of protocol overhead versus transmitted data.

Consequently, the results obtained depend on the means in use and on the main transfer direction selected.

Also, RF reader polling period may have an important impact over long transfer that requires several iterations. Polling period must be carefully adjusted: if too small, it can prevent I²C host from accessing the device rapidly; if too large, unnecessary time may be lost.

For example a 100-KByte firmware can be upgraded to a host in about 47 seconds.

Similarly, a 100-KByte history file can be uploaded to a handset in about 61 seconds when using proprietary fast commands.

8 Example

Refer to the *Firmware for the ST25DV-DISCOVERY boards* user manual (UM2062) for firmware upgrade and picture upload.

9 Revision history

Date	Revision	Changes
01-Mar-2017	1	Initial release.
02-Oct-2019	2	Updated <i>Table 5: I²C sequence for FTM preparation (ST25DVxxK)</i> . Replaced generic ST25DVxxx and ST25DV with ST25DV-I2C.
25-May-2021	3	 Updated: Section : Introduction, Section 1.1: Product family denomination, Section 2: How to prepare for fast transfer mode, Section 3: How to initiate the fast transfer mode, Section 6: How to disable fast transfer mode, Section 7: Fast transfer mode efficiency Completely rework Section 5.1: FTM transmission from RF to I2C, Section 5.2: FTM transmission from I²C to RF Figure 1: FTM initialization, Figure 4: FTM transmission from RF to I2C, Figure 6: FTM transmission from I²C to RF, Figure 8: FTM reset Table 3: RF sequence for FTM preparation (ST25DVxxK), Table 5: I²C sequence for FTM preparation (ST25DVxxK), Table 5: I²C sequence to initiate FTM, Table 8: I²C sequence to initiate FTM, Table 15: Reset MB_MODE in system register FTM (RF sequence), Table 16: Reset MB_EN in dynamic register MB_CTRL_Dyn (I²C sequence), Table 17: Reset MB_MODE in System (I²C sequence) Added Table 1: Applicable products, Table 4: RF sequence for FTM preparation (ST25DVxxKC), Table 6: I²C sequence for FTM preparation (ST25DVxxKC) Removed: Section 4.1 RF sequence to detect progress in FTM, Section 4.2 I2C sequence to initiate FTM

Table 18. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

AN4910 Rev 3