

Hermes

General Purpose Robot Platform

CONTENTS

1.Introduction	4
2.Introduction to Hermes Features	5
2.1 Autonomous Path-Finding	5
2.2 Robot Collaboration	5
2.3 Cross-Floor Delivery	5
2.4 Smart Obstacle Avoidance	5
2.5 Comprehensive Safety	5
2.6 Autonomous Recharging	6
3.Hermes Schematic Diagram	7
4.Hermes Charging Stand	8
5. Parameters	9
6. Instructions Of Hardwares	11
6.1 Wire Instructions	11
6.2 Important Interfaces of Developing Board on RK3399	13
7. Setup Instructions	13
7.1 Openning	13
7.2 Placing Charging Base	14
7.3 Power ON/OFF	15
7.4 Charging	15
7.5 Map Building and Upload	16
7.6 Host Computer Completes Startup and Loading The Map	18
8. Connection to Computer	19
8.1 Wired Connection	19
8.2 Wireless Connection	19
9. Aajusting Tools	19
9.1 RoboStudio	19
9.2 Web Management Backstage	20

<u>SL</u>\<u>MTEC</u>

10. Developer Tools	20
10.1 Start Using	20
10.2 Inter-system Adjusting Framework	20
10.3 Instructions of Each System	21
10.4 Demonstrations of Code	26
10.5 Details Of Robot API	27
11. Introduction And Use Of Elevator Control	29
11.1 Introduction	29
11.2 Features	29

1. Introduction

Developed by Slamtec, Hermes is a scalable and low-cost robot platform capable of meeting the needs of small-to medium-sized robot application development in areas such as smart patrol robots, container transportation robots, hotel delivery robots, food delivery robots, and more.

Autonomous Localization and Navigation

The built-in SLAMCUBE autonomous localization and navigation system kit enables path-finding and localization and navigation features to help robots figure out where they are, where they should go, and the best way to get there. Hermes is capable of performing a variety of tasks across different commercial environments.

Multi-Sensor Data Fusion

Multi-sensor data fusion technology is an effective way to improve the sensing capability of robotic systems. Hermes uses multi-sensor data fusion technology to effectively realize high degrees of autonomy and awareness in unpredictable environments. Fitted with equipment such as lidar, magnetic sensors, depth cameras, and bumper sensors, Hermes can implement autonomous mapping, localization, and navigation by flexibly responding to complex and ever-changing operational environments.

2. Introduction to Hermes Features

2.1 Autonomous Path-Finding

The built-in SLAMCUBE autonomous localization and navigation system kit enables path-finding and localization and navigation features to help robots figure out where they are, where they should go, and the best way to get there. Hermes is capable of performing a variety of tasks across different commercial environments. Hermes is capable of autonomous localization and path-finding in accordance with task target points, implementing autonomous movement.

2.2 Robot Collaboration

Hermes supports multi-robot collaboration to meet the needs of multi-task operations in complex environments during peak periods. Hermes supports local area network (LAN) and cloud platform collaborative operations, along with the dynamic adjustment of both speed and delivery routes in accordance with the environment to realize efficient, safe, and reliable multi-point delivery.

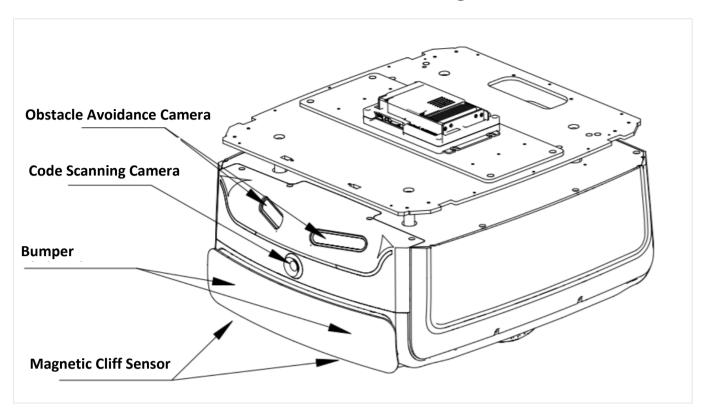
2.3 Cross-Floor Delivery

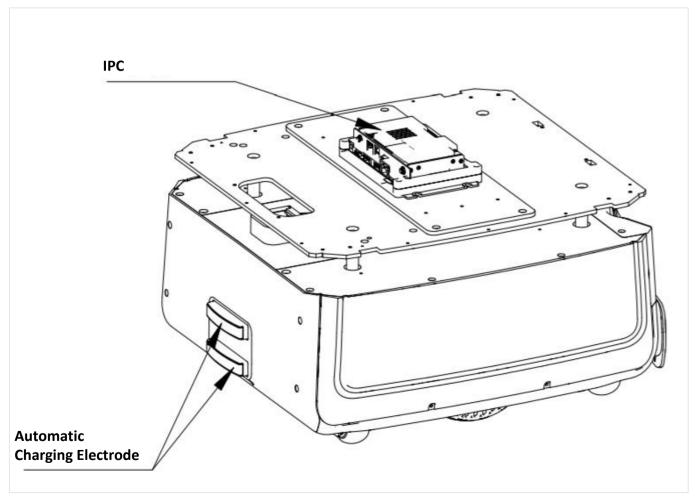
The Smart Elevator Control 3.0 system provides accurate detection of elevator statuses along with call-control functionality to provide efficient and reliable solutions that help hotel delivery robots autonomously navigate elevators in cross-floor scenarios. Through our API interfaces, Smart Elevator Control 3.0, as a relatively independent set of solutions, can also be integrated with other smart devices or third-party applications to meet the differentiated customization needs of customers.

2.4 Smart Obstacle Avoidance

The multi-sensor fusion technology of Hermes provides rapid and accurate identification of surrounding active environments, enabling smart obstacle avoidance and greatly reducing the chances of safety incidents.

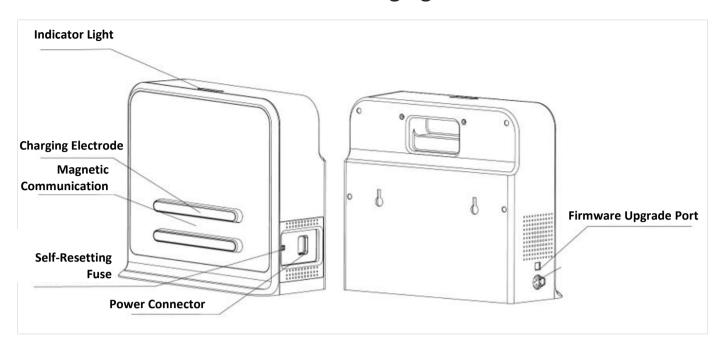
2.5 Comprehensive Safety


Hermes uses multi-sensor fusion methods such as dual-depth magnetic sensors, bumper sensors, and lidar to accurately identify and avoid both moving and static obstacles. The robot also supports fall avoidance, collision avoidance, and emergency braking functionality to ensure comprehensive safety during the move process.



2.6 Autonomous Recharging

Sufficient power is ensured for Hermes to complete assigned tasks smoothly. Hermes automatically returns to the charging station when its battery charge falls below a configured threshold or when its tasks are completed.

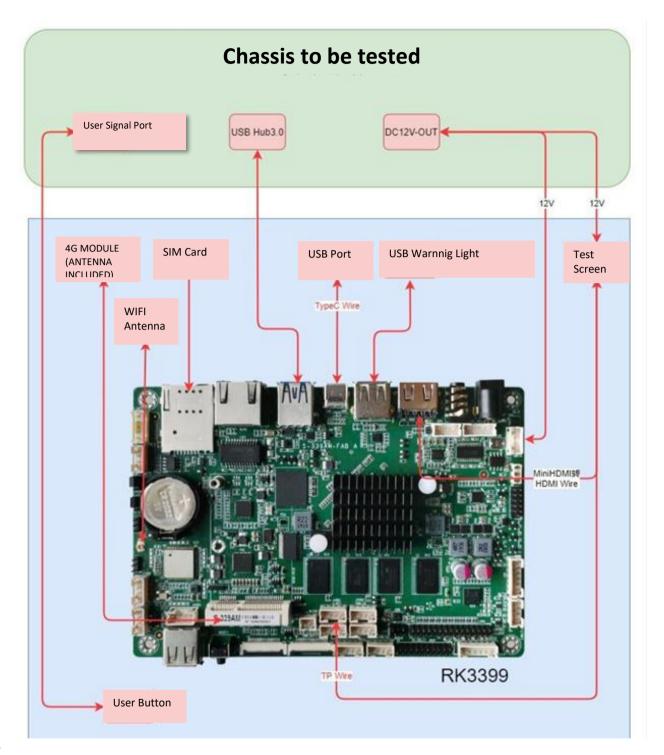

3. Hermes Schematic Diagram

4. Hermes Charging Stand

5. Parameters

N	ame	Hermes	
Core I	- eatures	SLAM Localization and Navigation	
It	tem	Index	Value
		Length x Width	545 x 465 mm
N 4 a ca a ca	ad Malaura	Height	272 mm (excludes controller)
Mass and Volume		Weight	40 kg (excludes controller)
		Max Load	60 kg
	Lidar Sensor	Max Scan Radius (90% Surface Reflective Rate)	25 m, 360° (standard) 30 m, 360° (Optional)
		Quantity	2 units
	Depth Camera	Detection Range	0.2m-10m
Sensor Performance Parameters	Sensor	Field of View (FOV)	Single H: 87° V: 58° Double H: 168° V: 58°
		Quantity	2 units
	Boundary Sensor	Max Detection Range	3 cm
		Quantity	2 units
	Bumper Sensor	Trigger Method	Physical Collision
Mapping Performance		Map Resolution	5 cm
iviapping i	remormance	Max Mapping Area	500m x 500m
Motion Parameters		Max Move Speed	1.2m/s (Can be customized1.5 m/s)
		Max Cross Slope	16°
		Passing Obstacle Height	2 cm
		Passing Obstacle Width	4 cm
Hear Down	Handayera Dant	Ethernet	1x RJ45 Gigabit Ethernet Port
User Port	Hardware Port	Power Connector	DC 12 V

		Wi-Fi	2.4 GHz/5 GHz
		4G	1x 4G
		SIM card slot	1 unit
		HDMI	1x HDMI
		Audio	1x 3.5mm Headset Socket 1x LINE_MIC Audio Jack (Co-lay with headset socket) 1x Dual-Channel 5w/8Ω Amplifier Jack
		Type-C	Standard USB 3.0 Type-C Port
	Software API	SLAMWARE™	
Battery and Capacity		Capacity Specifications	16 Ah (Standard) 25 Ah (Optional)
		No-Load Operating Time	9.5h (16Ah) 15h (25Ah)
		Charging Time	3h-4h
		Power Dissipation in Stand-By Time	24W
		Battery Life	800 charges
Power Consumption		Standby power consumption	32W (16Ah, No-load)
		Motion power consumption	39W(No-load)
		Full load power consumption	31W (Standby) 62W (Motion)
		Maximum access power consumption	126W
Wh	eelset	Wheelset Parameters	6.5-inch In-Wheel Motor
Operating Environment		Charging Station	DC25.5V 6A
		Operating Temperature	-10°C to +50°C
		Operating Humidity	5 to 90%rh (no condensation)

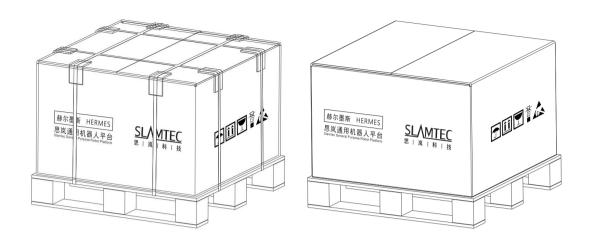

6. Instructions Of Hardwares

6.1 Wire Instructions

Interfaces	Picture	Index	Function	Note
Power ON/OFF			Power switch of the entire system. Short press until the indicator light turns on power-on, long press until the indicator light turns off power-off.	
Shut Down	LANIBOO 急停		Effectively control Hermes in an emergency. After pressing, Hermes will immediately shut down.	It is a switch that must be designed according to rigid regulations. If the switch is not designed, Hermes will refuse to run.
Brake			When robot is energized, press this switch to release the brake and you can push the robot freely; press it once again to brake, and the robot will not be able to push it freely.	Invalid if the robot is not turned on
24V Power		Rated Voltage 24V Maximum current 20A	Maximum output power is 480W, can be used to supply power to external devices	No overload
12V RK3399 Power Supply Wire	127-3389	Rated Voltage 12V Maximum Current 20A	Cube2 supplies power to the RK3399 development board.	

Depth Camera Interface	在双键	USB3.0	Connected to the RK3399 development via USB3.0 to obtain information.	Need to pay attention to the left and right sequence.
Docking Camere	高音が形が	USB2.0	Connected to the RK3399 development via USB3.0 to obtain information of code scanning camera.	Assist precise docking.
12V -DISP	4510-AZ)	Rated Voltage 12V	12V working power of Cube2 to provide the external display screen of human- computer interaction.	
USB-Type-C	USB 3 O HUS	USB3.0	Used for communication between 3399 and Cube2.	Connect to Hub3.0

6.2 Important Interfaces of Developing Board on RK3399



7.

Setup Instructions

7.1 Openning

1. After receiving the Hermes machine, please check whether the packing box is intact as shown in the left picture, and whether the box on the right side of the Hermes sample of the outer box is checked. After confirming that the packing is complete and the box contains Hermes, use packing pliers to cut the packing tape, remove all packing straps and paper corners, it should be shown as on the right picture.

7-1 Hermes unpacking

2. Remove the document bag on the top of the box. The document bag contains Hermes-related paper materials, such as parameter descriptions and quick start guides, please keep them properly.

7-2 Hermes document bag

7.2 Placing Charging Base

Hermes can be charged by returning to the charging base automatically, so the position of the charging base will affect the automatic return charging function of Hermes. When Hermes returns to the charging station, it will generate propelling force. Therefore, it is best to place the charging stand with its back against the wall. The wall must meet the following conditions:

- a. The charging base must be attached to the wall, without no obstacle in the middle, try to avoid the wall with skirting, etc.
- b. The wall material cannot be high-permeability materials, such as mirror or glass
- c. The wall width needs to be at least three times wider than the width of the charging stand
- d. The wall must be a straight wall, not a curved wall

The charging base needs to be connected to a 220V power supply. The length of the external power cord of the charging base is 1.5m. Therefore, it is necessary to ensure that there is a 220 V interface within

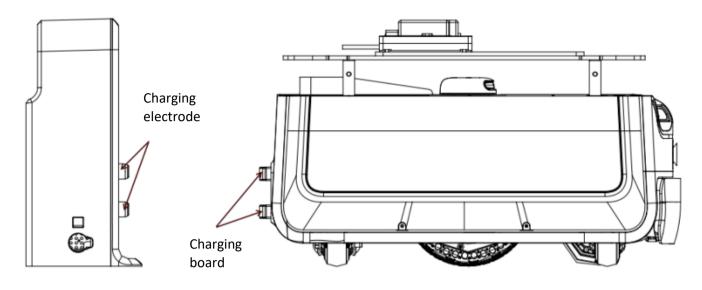
1.5m of the wall against which the charging base rests. The ground wiring harness is messy causing unnecessary trouble).

The ground in front of the charging base must meet the following conditions:

- a. Open, with no obstacles within a radius of 2m in front of the charging stand as the center of the circle
- b. Plane, no slope
- c. The ground cannot be covered with soft carpet that causes Hermes to sink more than 2cm

To ensure that Hermes automatically returns to the charging function, it is necessary to ensure that Hermes always starts from the charging base.

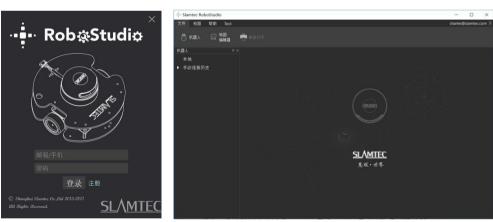
Note: If you want to change the position of the charging stand, you need to set the corresponding setting according to the position you need when loading the map. For detailed operations, please see the SDK corresponding interface operation document.


7.3 Power ON/OFF

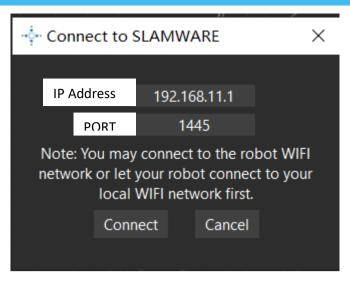
Hold the power switch until the power switch indicator lights up and release it. The machine system enters the startup process, the front light strip lights up, and the wheel hub is in the brake state, indicating that the startup is complete.

Hold the power switch until the power switch indicator light goes out, then release it, the machine enters the shutdown process, the light strip on the front of the machine goes out, and the machine can be pushed arbitrarily, indicating that the shutdown is complete.

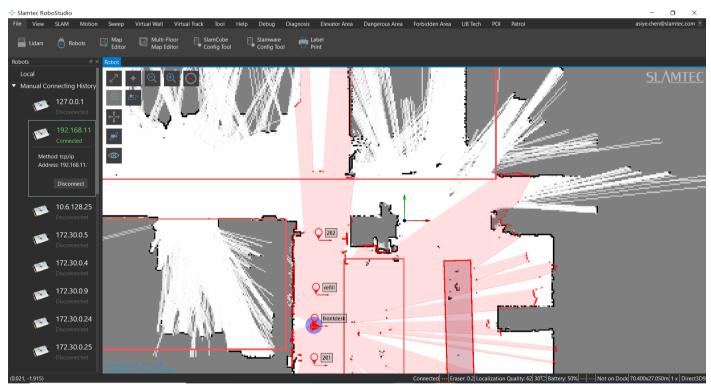
7.4 Charging


As shown in the figure below, align the charging piece of the machine with the charging electrode of the charging pile. After waiting for 10 seconds, the front light strip of the robot lights up, the wheel hub enters the braking state, and the breathing light of the charging pile flashes, indicating that charging has started.

7-3 Hermes charging

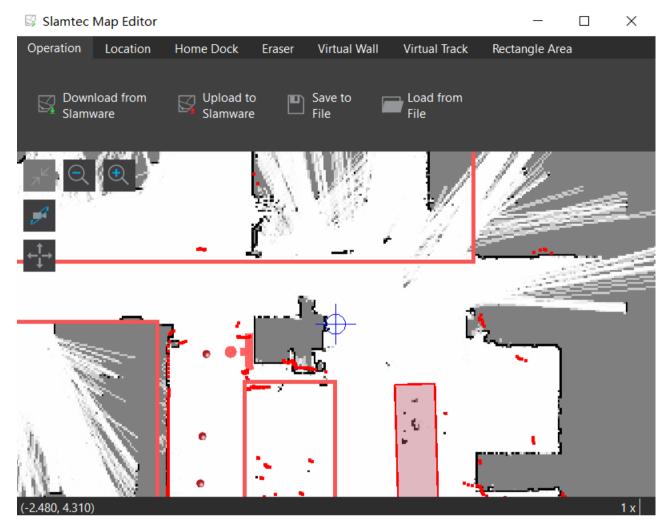

7.5 Map Building and Upload

Download and install the robot graphical control management tool Robot Studio from our official website http://www.slamtec.com/cn/RoboStudio to adjust and use Hermes, sign up account and log in. In the menu-toolbar area, click "File-Robot" in turn, and a docking page named Robot will appear on the left side of the workspace, as shown in the figure below. The user connects/disconnects the robot through this page.


7-4 RoboStudio Robot page

Right-click the blank space of the robot list, click "Manually connect robots" in the pop-up menu, and the connect robot dialog box will pop up (as shown below). Enter the IP address and port number of the Hermes robot above and click the connect button to connect (This connection method is suitable for machines that have been assigned an IP address through the Web portal management backstage). When the computer has been connected to the SSID of the aforementioned Hermes robot through a network adapter (SSID can be viewed on the label of the machine), enter the IP address 192.168.11.1 by default (note that your wireless network adapter IP address should be set to automatically obtain it using DHCP).

7-5 RoboStudio Robot connecting page


When finishing connecting, the work area will display the robot, map information, and status information. In the robot page, you will find that the name of the connected device turns green, and the status is "Connected", as shown in the figure below.

7-6 RoboStudio Robot connecting page

Left click the spot inside the map-building area, let Hermes build the map. When finishing, please use the virtual wall function to isolate the places that need to be isolated. Then click "File-Map Editor" in turn, choose to save the file or upload to the firmware to save the map.

7-7 RoboStudio Robot map-editing page

7.6 Host Computer Completes Startup and Loading The Map

Below is a reference example of how to use the SDK to complete the startup and loading of a specific map on the host computer.

```
* upload map file
to Hermes 3. */
    #include <iostream>
    #include <rpos\robot_platforms\slamware_core_platform.h>
    #include <rpos\robot platforms\objects\composite map reader.h>
    #include <rpos\core\pose.h>
8.
9.
    using namespace std;
10.
11. int main()
12. {
13.
       try
14.
          string map_path = ".\\map.stcm"; //the path of map
15.
16.
          string Hermes_ip = "192.168.11.1"; //the ip of Hermes
          int Hermes port = 1445; //the port of Hermes .default is 1445
17.
18.
19.
          rpos::robot_platforms::SlamwareCorePlatform Hermes =
20.
            rpos::robot_platforms::SlamwareCorePlatform::connect(Hermes_ip, Hermes_port);
          //connect to the Hermes
21.
          rpos:: robot\_platforms:: objects:: Composite Map Reader\ cmap reader;
22.
```



```
23.
          //map reader
24.
          rpos::core::Pose Hermes pose = rpos::core::Pose(rpos::core::Location(0, 0, 0));
25
          //the Hermes pose in map(Hermes_pose should be the Hermes's real pose in new map)
26.
          //using Hermes.getpose() to get the old Hermes pose
27.
          auto map = cmapreader.loadFile(map path);
28.
          //load map
29.
          Hermes.setCompositeMap(*map, Hermes pose);
30.
          //set compositemap
          rpos::core::Pose home pose = rpos::core::Pose(rpos::core::Location(0, 0, 0));
31.
32.
          //the home pose in map(home pose should be the home's real pose in new map)
33.
          //using Hermes.gethomepose() to get the old home pose
34.
          Hermes.setHomePose(home_pose);
35.
          //set home pose
36.
37.
       catch (rpos::robot platforms::ConnectionFailException &e)
38.
39.
          cout << "connect failed on " << e.what() << endl;</pre>
40.
41.
       catch (rpos::system::detail::ExceptionBase &e)
42.
43.
          cout << "failed on " << e.what() << endl;
44.
45.
46.
       return 0;
47. }
```

Further motion deployment details, please see the SDK instruction document

8. Connection to Computer

8.1 Wired Connection

Based on the actual development and application needs, the RJ45 universal network port is designed on the expansion interface layer of Hermes, which can be directly connected to the PC through the network cable to facilitate users to expand or develop robots.

8.2 Wireless Connection

In order to facilitate users to debug and meet the needs of actual scene applications in the later period, Hermes also supports wireless connections. Users can directly use their computer to connect to Hermes' SSID and then use the default IP address 192.168.11.1 to connect to Hermes (IP address should be set to be automatically obtained using DHCP), and it also supports the use of Portal management tools to assign a specific IP address to Hermes then use that IP address to connect to Hermes.

9. Aajusting Tools

9.1 RoboStudio

RoboStudio graphical tools are used to adjust and use Hermes, please download and install it from our official website: http://www.slamtec.com/cn/RoboStudio, and coming with manual to introduce those features.

9.2 Web Management Backstage

In the process of developing, adjusting and using SLAMWARE equipment, various operations can be performed on the equipment through the web management backstage, such as viewing basic information, updating the version, configuring WiFi, etc. (Default username: admin, default password: admin111)

Currently, web management backstage supports following functions:

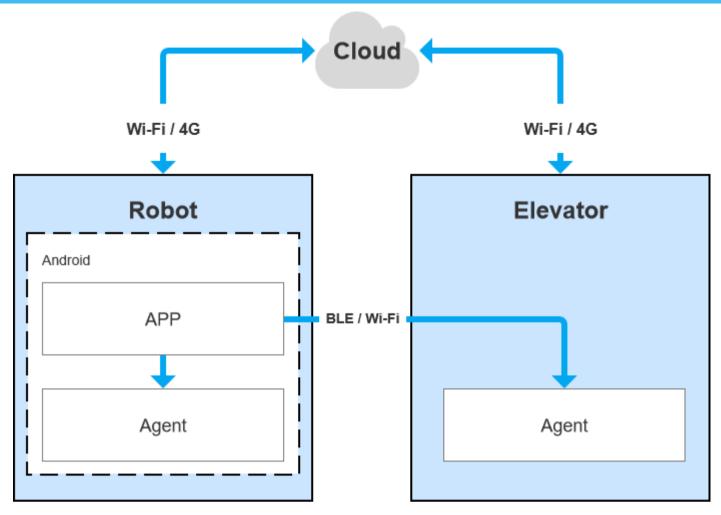
- 1. Check basic information of the device
- 2. Restart the module
- 3. Update the firmware

Slamtec will regularly provide Hermes firmware updates and upgrades. You can easily upgrade the firmware for Hermes through the management backstage. Please obtain the latest firmware from sales or technical support personnel. The update process will last 5-10 minutes. The buzzer of Hermes will continue to sound during the update, and Hermes will automatically restart after the update. Before that, please make sure that Hermes has sufficient power.

- 4. Configuring WIFI
- 5. Start the SLAMWARE Core diagnostic mode
- Modify the administrator password

More details on usages please refer to:

https://wiki.slamtec.com/display/SD/SQ001+SLAMWARE+Web+Portal+Function+Overview


10. Developer Tools

10.1 Start Using

The Agent SDK of the Hermes chassis is developed based on the C++ language to reduce user access costs and improve the robustness of the SDK. At the same time, it has strong compatibility and supports multiple languages such as Java, C++, C, and Kotlin. The following is a detailed introduction to the relevant examples and usage guidelines of the Agent SDK call based on the Hermes chassis.

10.2 Inter-system Adjusting Framework

Robot App controls the robot's positioning, movement, and return to piles through communication; at the same time, Robot App sends instructions to the robot according to various business scenarios, and Robot Agent will provide data interfaces, task operation interfaces, and business services to Robot App.

10-1 COMMUNICATION BETWEEN EACH SYSTEM OF HERMES

10.3 Instructions of Each System

10.3.1 Robot Agent

Robot Agent is a service program running on the Hermes chassis, through which the cloud and the elevator control terminal communicate with the elevator control equipment. Inside the Robot system, the Robot Agent communicates with the Robot App, receives instructions from the Robot App to control the Robot, and sends the Robot status at the same time.

The core function of Robot Agent is:

✓ Communicate with the Robot Cloud, Robot APP, send the Robot status and receive instructions

10.3.2 Elevator Agent

Elevator Agent is a service program running on the Linux system of the elevator control main control box. The cloud and the robot end communicate with the elevator control equipment through it. Inside the elevator control system, the Elevator Agent communicates with the Elevator Controller through UDP, sending elevator control instructions and obtaining elevator status.

The core function of Elevator Agent is:

- ✓ Communicate with the Robot Cloud, Robot APP, send the elevator status and receive instructions of elevator control
- ✓ Communicate with the Elevator Controller, receive the elevator status and send instructions of elevator control

10.3.3 Robot Cloud

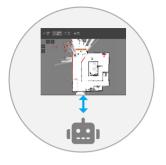
Robot Cloud is a set of services provided to realize remote management, scheduling, and control of robots. It runs in the cloud and communicates with the robot at one end and the elevator control equipment at the other end. Therefore, elevator control is part of the function. Robot Cloud communicates with the Elevator Agent running on the main control box of the elevator control through the MQTT protocol.

Its core functions include:

- ✓ Send instructions, control the elevator to the designated floor
- ✓ Send instructions, control the elevator to open the door
- ✓ Send instructions, control the elevator to close the door
- ✓ Receive the up/down status of elevator
- ✓ Receive the current floor of the elevator

10.3.4 Robot App

10.3.4.1 Open Source Application-Hotel Delivery APP


The hotel delivery app is a service program running on the robot. It draws a map and loads it locally on the robot through RoboStudio graphical tools. At the same time, combined with the intelligent elevator control developed by SLAMTEC, the robot can move up and down with the elevator autonomously and finally realize multi-floor movement.

DEPLOYMENT

DELIVERY PROCESS

1. Personnel installing SLAMTEC elevator control device

2. Personnel sketch multi-floor map and load it to the Robot.

3. Waiter receive the takeout of the customer, and send it to their room using Robot.

4. Waiter entering the process code

5. Click "delivery to room", Robot open the gate, waiter placing the takeout.

6. Waiter the room number, click "leave right now", Robot perform delivery task.

7. Robot come to the elevator, control device, Robot start to designated floor

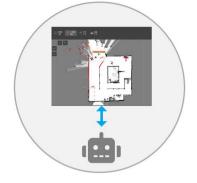
8. Robot exit the elevator to come to the communicate with the elevator room of customer, customer click" confirm", Robot open the gate, customer calling elevator process, transfe take the takeout, Robot close the gate, return to the front desk, complete the delivery mission.

10-2 HOTEL DELIVERY BUSINESS FLOWCHART

Its core functions include:

- Get configuration information of the machine
- Check mission info
- Create mission
- Cancel all mission
- Cancel some mission
- Get status of current mission
- Pause/ continue the mission
- Start picking up items
- End picking up items

Its basic function is similar to Robot Cloud's elevator control function:


- ✓ Send instruction to control the elevator to designated floor
- ✓ Send instruction to control the elevator to open the door
- ✓ Send instruction to control the elevator to close the door
- ✓ Get up/ down status of elevator
- ✓ Get the current floor of elevator

NOTE: The hotel's multi-floor delivery solution needs to cooperate with the elevator control system, also needs to customize the cabin model. Please contact the marketing department for delivery business.

10.3.4.2 Open Source application – Restaurant Delivery App

The restaurant delivery app is a service program running on the robot. The application scene is a restaurant. It draws a map and loads it to the robot's local area through RoboStudio graphical tools. It is a universal application for human-computer interaction to achieve multi-point task delivery.

DEPLOYMENT

1. Personnel sketching map and load to the Robot

DELIVERY PROCESS

2. Restaurant waiter sets menu into the Robot

3. Waiter enters designated table number

4. Robot send items to the destination

5. Robot informing customer "Here's your order!" when reaching destination

6. Robot returning to picking up point and wait for another order

10-3 RESTAURANT DELIVERY BUSINESS FLOWCHART

Its core functions include:

- ✓ Get device battery percentage
- ✓ Get health status info of the device
- ✓ Get POI info
- ✓ Get password of the action
- ✓ Create new action
- ✓ Get current action
- ✓ Stop current action
- ✓ Shut down of restart Robot

10.4 Demonstrations of Code

1. The following is an example of the Robot APP calling the Robot Agent interface to check the battery status

GET http://127.0.0.1:1448/api/core/system/v1/power/status

The format of the returned data is application/json

```
interface AgentApi {
   /**
    * get方式调用 value: 接口地址
    * PowerStatus: 接口返回json格式对应的bean格式的data class的值
   @GET("/core/system/vl/power/status")
   fun queryPowerStatus(): Call<PowerStatus>
}
* batteryPercentage : 90 电池电量百分比, 0 ~ 100
* dockingStatus : 对桩状态
* isCharging : 是否正在充电...
data class PowerStatus(
       val batteryPercentage: Int, val dockingStatus: String, val isCharging: Boolean,
       val isDCConnected: Boolean, val powerStage: String, val sleepMode: String
/**
* retrofit接口代理类
object AgentServiceCreator {
   fun <T> create(serviceClass: Class<T>, timeout: Long): T =
           Retrofit.Builder().baseUrl("http://127.0.0.1:1448/api/")
                   .addConverterFactory(GsonConverterFactory.create()).client(
                           OkHttpClient.Builder().retryOnConnectionFailure(true)
                                   .connectTimeout(timeout, TimeUnit.SECONDS)
                                   .addInterceptor { chain ->
                                       val originalRequest = chain.request()
                                       val requestBuilder =
                                               originalRequest.newBuilder().addHeader("Connection", "close")
                                       chain.proceed(requestBuilder.build())
                                   }.build()
                   .build().create(serviceClass)
}
//查询电量,返回值为powerstatus
val powerStatus = AgentServiceCreator.create(AgentApi::class.java, 1L).queryPowerStatus().await()
       Result.success(powerStatus)
```

2. The following is the Robot App calling the Robot Agent interface to make the robot move across floors POST http://127.0.0.1:1448/api/core/motion/v1/actions

The request message format is application/json

10.5 Details Of Robot API

FUNCTION OF MODULES	API LIST	
Locate, map building-related functions	Get the Robot location	
	Set the Robot location	
	Get quality of location	
	Whether support locating	
	Start/Close locating	
	Whether start map building	
	Start/ pause map building	
	Get location of power station	
	Set location of power station	
	Get current map	
	Delete current map	
Mark map elements manually	Get all virtual line segment	
	Add virtual line segment	
	Adjust virtual line segment	
	Delete virtual line segment	
	Delete virtual line segment	
	Get all POI in current map	
	Add POI	
	Empty POI	
	Find POI according to ID	
	Modify POI	
	Delete POI	
Motion control of the Robot	Get all supported actions	
	Get current action	
	Stop current action	
	Create new action	
	Check action status	
Firmware Upgrade	Get firmware upgrade process	
Android application management	Get all custom installed apps	
	Install APP	

	Uninstall an APP
Multi-floor map and POI management, taking	Move across floors
elevator, etc.	Go back across floors
	Get all floor info
	Get floor info of floor of the robot
	Setup info of floor of the robot
	Get POI info
	Upload map to the robot
	Long-lasting save the map
	Reload the map
Delivery service-related interfaces	Get password of the action
	Set password of the action
	Get configuration info of the device
	Get setup info related to the delivery
	Check task info
	Create task
	Cancel all task
	Cancel some task
	Get current mission status
	Stop/ continue current mission
	Start picking up items
	End picking up items
	Get info of objects
	NOTE: delivery business please inform
	marketing department
Restaurant delivery service-related interfaces	Get the current battery percentage
	Get the health info of the device
	Get POI info
	Get password of the action
	Make up new actions
	Get current action
	Terminate current action
	Shut down or restart the robot
	

MORE DETAILS OF API: https://github.com/slamtec/HermesSampleApp

11. Introduction And Use Of Elevator Control

11.1 Introduction

11-1 INTELLIGENT ELEVATOR CONTROL DEVELOPED BY SLAMTEC

Intelligent elevator control, independently developed by Shanghai SLAMTEC CO., Ltd, can provide accurate detection of elevator status, program control call elevators, control elevators, combined with Mercury Π hotel robots, helping the robots to take and exit the elevators autonomously. Providing reliable solutions to multi-floor operation scenarios. In addition to working with hotel robots, the product can be used as an independent set of solutions. Through the API interface we provide, this product can also interact with other smart devices or products to meet the different customization needs of customers. At the same time, the product can also be seamlessly connected to the Hermes chassis, to provide technical service support for more specific needs in other scenarios.

11.2 Features

11.2.1 Intelligence Elevator Control

The core function of this product is to help robots and other intelligent devices to control the elevator, such as calling the elevator, going to the designated floor, and controlling the elevator to open and close the door. This function greatly improves the business scenario of robots and breaks the previous limitation that robots can only work on the same floor.

11.2.2 Intelligence Status Detection

Through the built-in sensor and adaptive algorithm, this product can accurately detect the current floor, up and down status of the elevator, real-time to the millisecond level, with an accuracy of more than 96%, providing a very critical foundation so that the robot can enter and exit the elevator correctly and complete the work.

11.2.3 Elevator Diversity Adaption

The main control box has developed a variety of optimized filtering algorithms, so that this product is suitable for many different types of elevators, such as single-door elevators, double-door elevators, front and rear door elevators, etc. As it covers as many scenes as possible, this product can be used in most elevators at present. Users only need to simply calibrate and adjust through the APP provided after installing the equipment.

11.2.4 Multi-Level Network Adaption

Considering the limitations of the elevator network, how to ensure data interconnection and program interoperability is a very critical factor, and relatively it is also a difficult point. After continuous optimization iterations, we finally found a way to solve this problem. This product provides 4G, WIFI, BLE and other multi-level network communication methods to interact with robots and other smart devices to ensure the reliability of the communication link.

11.2.5 OTA Remote Upgrade

Support OTA remote upgrade of software and firmware, and batch deployment. At the same time, it provides support for VPN, which can remotely log in to the Linux system of this product for upgrades and other operations. Through the OTA function, real-time updates, upgrades and optimization can be done.

11.2.6 Interface Support

The intelligent elevator control provides a consistent API interface to the outside world, supports Bluetooth, MQTT, and HTTP communication protocols. Customers can control and interact with the elevator by writing their own program code. At the same time, it supports secondary development to meet the different customization needs of customers.

11.2.7 Swipe To Bypass

For some elevators that require a swipe card to ride, this product can also be easily supported. Just install the equipment we specify when installing the device, and then turn on the swipe card to bypass it in the APP. In this way, even if there is a card reader, it can be easily bypassed and freely enter and exit the elevator.

11.2.8 Unified Management

The cloud platform provided by SLAMTEC can perform real-time monitoring of the status of all deployed products, batch upgrades, and further data mining through online management, information statistics, equipment monitoring, etc., to provide exclusive accurate data models for hotels or commercial buildings, to guide them to improve their overall operational capabilities and service quality.

To know more about the detailed solution of elevator control, obtain it from the marketing department. <u>Elevator control user manual->></u>