
CODE KIT CURRICULAR
CROSSWALK
This chart provides an overview of the CSTA and NGSS Standards that can be met by, or extended to meet, the Code Kit lessons.
Use the Code Master Workbook (after going through tutorials) and Invention Log (after creating inventions) as a way to assess whether
your students have fulfilled these standards. See Curriculum Guide for additional information on assessment strategies.

IDENTIFIER CSTA STANDARD FRAME
CONCEPT

FRAMEWORK
PRACTICE

LESSONS THAT MEET
THIS STANDARDS

WAYS TO ADD THIS STANDARD
TO ANY LESSON

1B-A-2-1

1B-A-5-3

1B-A-5-4

1B-A-5-5

1B-A-3-7

1B-A-6-8

1B-C-7-9

1B-C-6-11

1B-D-4-14

Apply collaboration strategies to support
problem solving within the design cycle of a
program.

Create a plan as part of the iterative design
process, both independently and with diverse
collaborative teams (e.g., storyboard,
flowchart, pseudo-code, story map).

Construct programs, in order to solve
a problem or for creative expression,
that include sequencing, events, loops,
conditionals, parallelism, and variables, using
a block-based visual programming language
or text-based language, both independently
and collaboratively (e.g., pair programming).

Use mathematical operations to change a
value stored in a variable.

Construct and execute an algorithm (set
of step-by-step instructions) which includes
sequencing, loops, and conditionals to
accomplish a task, both independently and
collaboratively, with or without a computing
device.

Analyze and debug (fix) an algorithm
that includes sequencing, events, loops,
conditionals, parallelism, and variables.

Model how a computer system works.
[Clarification: Only includes basic elements
of a computer system, such as input, output,
processor, sensors, and storage.]

Identify, using accurate terminology, simple
hardware and software problems that may
occur during use, and apply strategies for
solving problems (e.g., reboot device, check
for power, check network availability, close
and reopen app).

Use numeric values to represent non-numeric
ideas in the computer (binary, ASCII, pixel
attributes such as RGB).

Algorithms and
Programs

Algorithms and
Programs

Algorithms and
Programs

Algorithms and
Programs

Algorithms and
Programs

Algorithms and
Programs

Computing
Systems

Computing
Systems

Data and
Analysis

Collaborating

Creating Computational
Artifacts

Creating Computational
Artifacts

Creating Computational
Artifacts

Recognizing and Defining
Computational Problems

Testing and Refining

Communicating about
Computing

Testing and Refining

Developing and Using
Abstractions

Invention Lessons: Ultimate
Shootout; Hot Potato...of
Doom!; Rockstar Guitar

Invention Lessons: Ultimate
Shootout; Hot Potato...of
Doom!; Rockstar Guitar

- All Tutorial Lessons: Inputs
and Outputs; Loops; Logic;
Variables; Functions
- Invention Lessons: Ultimate
Shootout; Hot Potato...of
Doom!; Rockstar Guitar”

- Hello World
- All Tutorial Lessons: Inputs
and Outputs; Loops; Logic;
Variables; Functions
- Invention Lessons: Ultimate
Shootout; Hot Potato...of
Doom!; Rockstar Guitar

Invention Lessons: Ultimate
Shootout; Hot Potato...of
Doom!; Rockstar Guitar

Hello World

Tutorial Lessons: Loops;
Logic; Variables; Functions

Meet this standard during the Remix phase in
any lesson by asking students to track score or
add a second player’s score in their games.

Meet this standard in any lesson by presenting
students with an altered version of the
invention code that you know doesn’t work.
Challenge students to fix it. The debugging
checklist can be used as a reference.

Meet this standard in any lesson by asking
students to describe how inputs, outputs, and
the codeBit function in their circuit.

Meet this standard in any lesson by asking
students, before they playtest their inventions,
to predict what problems they may encounter
with the hardware or software.

Meet this standard during the Remix phase
in any lesson by challenging students to add
the [COLOR RGB] block to their code. This
block allows students to customize the color of
a pixel by specifying values for Red, Green,
and Blue.

ELEMENTARY
(3–5)

CSTA ALIGNMENT

IDENTIFIER CSTA STANDARD FRAME
CONCEPT

FRAMEWORK
PRACTICE

LESSONS THAT MEET
THIS STANDARDS

WAYS TO ADD THIS STANDARD
TO ANY LESSON

2-A-2-1

2-A-7-4

2-A-5-6

2-A-5-7

2-A-4-8

2-A-6-10

3A-A-2-1

3A-A-5-4

3A-C-5-14

3B-A-7-3

Solicit and integrate peer feedback as
appropriate to develop or refine a program.

Interpret the flow of execution of algorithms
and predict their outcomes.

Develop programs, both independently and
collaboratively, that include sequences with
nested loops and multiple branches.

Create variables that represent different
types of data and manipulate their values.

Define and use procedures that hide the
complexity of a task and can be reused to
solve similar tasks.

Use an iterative design process (e.g., define
the problem, generate ideas, build, test, and
improve solutions) to solve problems, both
independently and collaboratively.

Design and develop a software artifact
working in a team.

Design, develop, and implement a computing
artifact that responds to an event (e.g., robot
that responds to a sensor, mobile app that
responds to a text message, LED monster
that responds to a broadcast).

Create, extend, or modify existing programs
to add new features and behaviors using
different forms of inputs and outputs (e.g.,
inputs such as sensors, mouse clicks, data
sets; outputs such as text, graphics, sounds).

Modify an existing program to add additional
functionality and discuss intended and
unintended implications (e.g., breaking other
functionality).

Algorithms and
Programming

Algorithms and
Programming

Algorithms and
Programming

Algorithms and
Programming

Algorithms and
Programming

Algorithms and
Programming

Algorithms and
Programming

Algorithms and
Programming

Computing
Systems

Algorithms and
Programmin

Collaborating

Communicating about
Computing

Creating Computational
Artifacts

Creating Computational
Artifacts

Developing and Using
Abstractions

Testing and Refining

Collaborating

Creating Computational
Artifacts

Communicating About
Computing

Communicating About
Computing

All Invention Lessons:
Ultimate Shootout; Hot
Potato...of Doom!; Rockstar
Guitar; Tug of War

Tutorial Lessons: Loops;
Logic; Variables; Functions

Tutorial Lessons: Loops and
Variables

Invention Lesson: Tug of War

- All Invention Lessons:
Ultimate Shootout; Hot
Potato...of Doom!; Rockstar
Guitar; Tug of War
- Coding Challenge

- Invention Lesson: Tug of War
- Coding Challenge

- Invention Lesson: Tug of War
- Coding Challenge

- Invention Lesson: Tug of War
- Coding Challenge

- Invention Lesson: Tug of War
- Coding Challenge

Meet this standard in any lesson by inviting
students to share their prototypes with peers
during the Remix phase of the lesson, and then
integrate the feedback into further prototypes.

Meet this standard in any lesson by asking
students to read the code before they run it for
the first time, and predict what their circuit will
do when they run it.

Meet this standard in any lesson by having
students use the Invention Log to guide the
design process and record their explorations.

MIDDLE
(6–8)

HIGH
(9–10)

HIGH
(11–12)

CODE KIT CURRICULAR CROSSWALK

CSTA ALIGNMENT

IDENTIFIER PERFORMANCE EXPECTATION LESSONS THAT MEET THIS STANDARDS

 3-5-ETS1-2

3-5-ETS1-3

 MS-ETS1-1

MS-ETS1-2

MS-ETS1-3

HS-ETS1-1

HS-ETS1-2

Generate and compare multiple possible solutions to a problem based on how well each is
likely to meet the criteria and constraints of the problem.

Plan and carry out fair tests in which variables are controlled and failure points are
considered to identify aspects of a model or prototype that can be improved.

Define the criteria and constraints of a design problem with sufficient precision
to ensure a successful solution, taking into account relevant scientific principles
and potential impacts on people and the natural environment that may limit
possible solutions.

Evaluate competing design solutions using a systematic process to determine
how well they meet the criteria and constraints of the problem.

Analyze data from tests to determine similarities and differences among
several design solutions to identify the best characteristics of each that can be
combined into new solutions to better meet the criteria for success.

Analyze a major global challenge to specify qualitative and quantitative criteria
and constraints for solutions that account for societal needs and wants.

Design a solution to a complex real-world problem by breaking it down into
smaller, more manageable problems that can be solved through engineering.

 Invention Lessons: Ultimate Shootout; Hot Potato...of Doom!; Rockstar Guitar

 Invention Lessons: Ultimate Shootout; Hot Potato...of Doom!; Rockstar Guitar

 Coding Challenge

- All Invention Lessons: Ultimate Shootout; Hot Potato...of Doom!; Rockstar
Guitar; Tug of War
- Coding Challenge

- All Invention Lessons: Ultimate Shootout; Hot Potato...of Doom!; Rockstar
Guitar; Tug of War
- Coding Challenge

 Coding Challenge

 Coding Challenge

ELEMENTARY
(3–5)

MIDDLE
(6–8)

HIGH
(9–12)

CODE KIT CURRICULAR CROSSWALK

NGSS ALIGNMENT

