
Digi MicroPython

Programming Guide

Revision history—90002219

Revision Date Description

T April 2020 Added xbee_connect(), updated Install the certificates.

U August 2020 Added modem_status, AT commands that do not work in
MicroPython, delete_bondings(), passkey_enter(), passkey_confirm(),
secure(), io_callbacks(), and receive_callback(rx_callback). Added the
security argument to config(). Noted Digi modified slicing.

V December
2020

Added Idle device from MicroPython and apin.read_u16().
Updated Initiate sleep from MicroPython for the non-cellular devices.
Updated Test the connection.
Removed PyCharm section.

W February
2021

Added Recover an XBee device.

X November
2021

Added the digi.gnss module, dupterm method, and digi.cloud.Consle()
module.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United States
and other countries worldwide. All other trademarks mentioned in this document are the property of
their respective owners.
© 2021 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Customer support
Gather support information: Before contacting Digi technical support for help, gather the following
information:
 Product name and model
 Product serial number (s)

Digi MicroPython Programming Guide 2

http://www.digi.com/howtobuy/terms

 Firmware version
 Operating system/browser (if applicable)
 Logs (from time of reported issue)
 Trace (if possible)
 Description of issue
 Steps to reproduce

Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback
To provide feedback on this document, email your comments to

techcomm@digi.com

Include the document title and part number (Digi MicroPython Programming Guide, 90002219 X) in
the subject line of your email.

Digi MicroPython Programming Guide 3

http://www.digi.com/support
mailto:techcomm@digi.com

Contents

Digi MicroPython Programming Guide
Reference material 13

Which features apply to my device?

Use MicroPython
Access the MicroPython environment 16
Enter MicroPython code 16

Direct entry 16
Exit MicroPython 16
Display tools 16
Coding tips 16
Recover an XBee device 17

MicroPython syntax
Colons 19

After conditional statements and loop statements 19
Indentations 19

FOR loop with one statement indented 19
FOR loop with two statements indented 20

Functions 20
Function with arguments 20

Errors and exceptions
Syntax error 23

Example 23
Name error 23

Referencing a name that was not created 23
Referencing a name from one function that was created in a different function 23

OSError 24
Socket errors 24

ENOTCONN: Time out error 24
ENFILE: No sockets are available 24
ENXIO: No such device or address 24

Digi MicroPython Programming Guide 4

Digi MicroPython Programming Guide 5

Keyboard shortcuts
Keyboard shortcuts 26
Select a previously typed statement 26

Differences between MicroPython and other programming languages
Memory management 28
Variable types 28
Syntax 28

Curly braces and indentation 29
Semicolons 30
Increment operator 30
Logical operators 31

Develop applications on an XBee device
Space allocated to MicroPython 33
Code storage 33

Built-in modules embedded in XBee firmware (device flash) 33
Source code in .py files (file system) 33
Parsed and compiled code in .mpy files (file system) 33
Executable code on MicroPython heap (device RAM) 33
Compiled modules relocated from file system to device flash 34

How to organize your code 34
Run code at startup 34
Monitor memory usage 34

The gc module 34
The micropython module 35

Efficient coding 37
Application evolution 38

One-liners in the REPL 38
Short blocks in paste mode 38
Flash upload mode 38
Modules stored as .py files 38
Compiled modules stored as .mpy files 39
Compiled modules via Flash upload mode 39
Compiled modules embedded in device flash 40

Digi modified slicing for bytes and strings operations 40

Power management in MicroPython
Prevent sleep from MicroPython 42

XBee Cellular Modem: 42
XBee 3 Zigbee RF Module, XBee 3 802.15.4 RF Module, XBee 3 DigiMesh RF Module
description: 42

Initiate sleep from MicroPython 43
XBee Cellular Modem: 43
XBee 3 Zigbee RF Module, XBee 3 802.15.4 RF Module, XBee 3 DigiMesh RF Module: 43

Sleeping with AT commands 44
Idle a device from MicroPython 44

Enter and exit the idle state 44
Poll for data while the device is idle 45

Digi MicroPython Programming Guide 6

Access the primary UART
How to use the primary UART 48

sys.stdin limitations 48
Example: read bytes from the UART 48
Example: read the first 15 bytes from the UART 49

REPL (Read-Evaluate-Print Loop) examples
Ctrl+A: Enter raw REPL mode 51
Ctrl+B: Print the MicroPython banner 51

Print the banner 52
Print the banner and verify that the memory was not wiped 52

Ctrl+C: Regain control of the terminal 53
Ctrl+D: Reboot the MicroPython REPL 54
Ctrl+E: Enter paste mode 54

Paste one line of code 54
Paste a code segment 55

Ctrl+F: Upload code to flash 55
Load code to flash memory 56
Erase the code stored in flash memory 57

Flash memory and automatic code execution 57
Run stored code at start-up to flash LEDs 57
Disable code from running at start up 58
Ctrl+R: Run code in flash 59
Enable code to run at start-up 59

Perform a soft-reset or reboot 60

Access file system in MicroPython
Modify file system contents 62

uos.chdir(dir) 62
uos.getcwd() 62
uos.ilistdir([dir]) 62
uos.listdir([dir]) 62
uos.mkdir(dir) 62
uos.remove(file) 62
uos.rmdir(dir) 62
uos.rename(old_path, new_path) 62
uos.replace(old_path, new_path) 63
uos.sync() 63
uos.compile(source_file, mpy_file=None) 63
uos.format() 63
uos.hash([secure_file]) 63

Access data in files 64
File object methods 64

read(size=-1) 64
readinto(b) 65
readline(size=-1) 65
readlines() 65
write(b) 65
seek(offset, whence=0) 65
tell() 65
flush() 65

Digi MicroPython Programming Guide 7

close() 65
Import modules from file system 65
Reload a module 66
Compiled MicroPython files 66

Send and receive User Data Relay frames
Constants 68

Interfaces (always defined) 68
Limits 68

Methods 68
relay.receive() 68
relay.send(dest, data) 68
Exceptions 68
relay.callback(my_callback) 68

Examples 69

MicroPython libraries on GitHub

MicroPython modules
XBee-specific functions 72
Standard modules and functions 72
Discover available modules 73

Machine module
Reset-cause 75

Constants 75
Random numbers 75
Unique identifier 75
Class PWM (pulse width modulation) 75
Class ADC: analog to digital conversion 76

Constructors 76
Methods 77
Sample program 77

Class I2C: two-wire serial protocol 78
Constructors 79
General methods 79
Standard bus operations methods 79
Memory operations methods 79
Sample programs 80

Class Pin 83
Class UART 83

Test the UART interface 84
Use the UART class 84
Constructors 85
Methods 85
Constants 86

Class WDT: watchdog timer 86
Access the XBee device's I/O pins 86
Use the Pin() constructor 88
Use mode() to configure a pin 89

Digi MicroPython Programming Guide 8

Pin.DISABLED 89
Pin.IN 89
Pin.OUT 89
Pin.ALT 90
Pin.ANALOG 90
Pin.OPEN_DRAIN and Pin.ALT_OPEN_DRAIN 90

Use pull() to configure an internal pull up/down resistor 90

digi.ble module
Feature support 93
active() 93
config() 94

Query a value 94
Update configuration values 94

disconnect_code() 95
gap_connect() 95

<addr_type> 95
<address> 95
<timeout_ms> 96
<interval_us>, <window_us> 96
<onclose> 96
Return value 96

gap_connection methods 96
gattc_services() 96
gattc_characteristics() 97
gattc_descriptors() 98
gattc_read_characteristic() 98
gattc_configure() 98
gattc_read_descriptor() 99
gattc_write_characteristic() 99
gattc_write_descriptor() 100
addr() 100
close() 100
config() 100
isconnected() 102
secure() 102
io_callbacks() 102
delete_bondings() 103
passkey_enter() 103
passkey_confirm() 103

UUID() 103
<value> 103
Return value 103

gap_scan() 104
<duration_ms> 104
<interval_us>, <window_us> 104
<oldest> 104
Return value 104

gap_scan methods 104
get() 104
any() 105
stop() 105
stopped() 105

gap_scan advertisement format 105

Digi MicroPython Programming Guide 9

Use gap_scan as an iterator 105
Use gap_scan as a context manager 106
gap_advertise() 106

<interval_us> 106
<adv_data> 106
Return value 107

xbee_connect() 107
<gap_connection> 107
<receive> 107
<password> 108
<timeout> 108
Return value 108

xbee_connection methods 108
digi.ble samples 108

Generic gap advertising and gap scanning samples 108
Eddystone Beaconing samples 108
iBeacon samples 108

Troubleshooting 109
Fewer advertisements than expected when using gap_scan 109

Cellular network configuration module
Configure a specific network interface 111
class Cellular 111

Constructors 112
Cellular power and airplane mode method 112
Verify cellular network connection method 112
Cellular connection configuration method 112
Send an SMS message method 112
Receive an SMS message method 113
Register an SMS Receive Callback method 113
Cellular shutdown method 113
RSRP/RSRQ reporting in MicroPython 114

XBee module
AT commands that do not work in MicroPython 116
class XBee on XBee Cellular Modem 116

Constructors 116
Methods 116

XBee MicroPython module on the XBee 3 RF Modules 117
Functions 117
atcmd() 117
discover() 117
receive() 119
receive_callback(rx_callback) 120
transmit() 120
modem_status 121

digi.cloud module
Create and upload data points 124
class DataPoints 124

Digi MicroPython Programming Guide 10

Constructor 124
Optional parameter 124
Add a data point method 124
Upload data to Digi Remote Manager method 125
Check the status of a DataPoints object 126
The life-cycle of a DataPoints object 126
Delete a DataPoints object 126

Receive a Data Service Device Request 127
class device_request 127

Use the read(size=-1) method 128
Use the readinto(b) method 128
Use the write(b) method 128
Use the close() method 128

Use the API Explorer to send Device Requests 128
digi.cloud.Console() object 129

isconnected() method 129
read(size) method 129
readinto(buf) method 129
write(buf) method 129
close() method 129

The ussl module
ussl on the XBee Cellular Modem 131
Syntax 131

Usage 131

digi.gnss module
GNSS module methods 133

single_acquisition(callback, timeout=60) 133
raw_mode(callback) 133

GNSS examples 134

Terminal redirection
dupterm(stream_obj, index=0) 136

Use AWS IoT from MicroPython
Add an XBee Cellular Modem as an AWS IoT device 138
Create a policy for access control 138
Create a Thing 139
Install the certificates 141
Test the connection 142
Publish to a topic 144
Confirm published data 145
Subscribe to updates from AWS 145

Time module example: get the current time
Retrieve the local time 148

Digi MicroPython Programming Guide 11

Retrieve time with a loop 148
Delay and timing quick reference 149

Cellular network connection examples
Check the network connection 151
Check network connection with a loop 151
Check network connection and print connection parameters 152

Socket examples
Sockets 155
Basic socket operations: sending and receiving data, and closing the network connection 155

Basic data exchange code sample 155
Response header lines 156

Specialized receiving: send received data to a specific memory location 157
DNS lookup 158

DNS lookup code output 159
Set the timeout value and blocking/non-blocking mode 159
Send an HTTP request and dump the response 161
Socket errors 162

ENOTCONN: Time out error 162
ENFILE: No sockets are available 162
ENXIO: No such device or address 162

Unsupported methods 162

I/O pin examples
Change I/O pins 164
Print a list of pins 164
Change output pin values: turn LEDs on and off 165
Poll input pin values 165
Check the configuration of a pin 166
Check the pull-up mode of a pin 168
Measure voltage on the pin (Analog to Digital Converter) 169

SMS examples
Send an SMS message 172
Send an SMS message to a valid phone number 172
Check network connection and send an SMS message 172
Send to an invalid phone number 173
Receive an SMS message 173

Sample code 174
Receive an SMS message using a callback 175

XBee device examples
Print the temperature of the XBee Cellular Modem 177
Print the temperature of the XBee 3 Zigbee RF Module 177
Print a list of AT commands 178
xbee.discover() examples 180

Digi MicroPython Programming Guide 12

Handle responses as they are received 180
Gather all responses into a list 181

xbee.transmit() examples 181
xbee.transmit() using constants 181
xbee.transmit() using byte string 181

Digi MicroPython Programming Guide

This guide introduces the MicroPython programming language by showing how to create and run a
simple MicroPython program. It includes sample code to show how to use MicroPython to perform
actions on a Digi device, particularly those devices with Digi-specific behavior. It also includes
reference material that shows how MicroPython coding can be used with Digi devices.
You can code MicroPython to transform cryptic readings into useful data, filter out excess
transmissions, directly employ modern sensors and actuators, and use operational logic to glue inputs
and outputs together in an intelligent way.
The XBee Cellular Modem has MicroPython running on the device itself. You can access a MicroPython
prompt from the XBee Cellular Modem when you install it in an appropriate development board
(XBDB or XBIB), and connect it to a computer via a USB cable.

Reference material
MicroPython is an open-source programming language based on the Python 3 standard library.
MicroPython is optimized to run on a microcontroller, cellular modem, or embedded system.
Refer to the Get started with MicroPython section of the appropriate user guide for information on
how to enter the MicroPython environment and several simple examples to get you started:

n Digi XBee PyCharm IDE Plugin User Guide
n Digi XBee Cellular Embedded Modem User Guide
n Digi XBee Cellular 3G Global Embedded Modem User Guide
n Digi XBee 3 Cellular LTE Cat 1 Smart Modem User Guide
n Digi XBee 3 Cellular LTE-M Global Smart Modem User Guide
n XBee 3 802.15.4 RF Module User Guide
n XBee 3 DigiMesh RF Module User Guide
n XBee 3 Zigbee RF Module User Guide

This programming guide assumes basic programming knowledge. For help with programming
knowledge, you can refer to the following sites for Python and MicroPython:

n MicroPython: micropython.org
n MicroPython documentation: docs.micropython.org
n MicroPython Wiki: wiki.micropython.org
n Python: python.org

Digi MicroPython Programming Guide 13

https://www.digi.com/resources/documentation/digidocs/90002445/default.htm
https://www.digi.com/resources/documentation/digidocs/90001525/default.htm
https://www.digi.com/resources/documentation/Digidocs/90001541/
https://www.digi.com/resources/documentation/Digidocs/90002253/
http://www.digi.com/resources/documentation/Digidocs/90002258/
https://www.digi.com/resources/documentation/Digidocs/90002273/
https://www.digi.com/resources/documentation/Digidocs/90002277/
https://www.digi.com/resources/documentation/Digidocs/90001539/
http://micropython.org/
http://docs.micropython.org/en/latest/pyboard/
http://wiki.micropython.org/Home
https://www.python.org/about/gettingstarted/

Which features apply to my device?

MicroPython features and errors differ depending on the device you use. Unless specified, information
in this document applies to all devices. This table covers which features apply to specific products:

Feature XBee 3 Cellular XBee 3 Zigbee, DigiMesh, and 802.15.4

Digital I/O Yes Yes

I2C Yes Yes

Power management Yes Yes

Idle from MicroPython No Yes

Digi Remote Manager Yes1 No

Secondary UART Yes No

Real-time clock Yes No

File system Yes Yes

File system - concurrent file writes Yes No

File system - rename Yes No

File system - Edit files after creation Yes No

File System - delete Yes No2

File System - secure files Yes No

File System preserved across updates Yes No

GNSS on demand Yes3 No

1Remote Manager features are only supported on XBee 3 Cellular devices, not XBee Cellular.
2Files can be deleted, but doing so does not reclaim their space on the file system.
3XBee 3 Global LTE-M/NB-IoT only.

Digi MicroPython Programming Guide 14

Use MicroPython

Access the MicroPython environment 16
Enter MicroPython code 16
Exit MicroPython 16
Display tools 16
Coding tips 16
Recover an XBee device 17

Digi MicroPython Programming Guide 15

Use MicroPython Access the MicroPython environment

Digi MicroPython Programming Guide 16

Access the MicroPython environment
To begin using MicroPython on the XBee device, open XCTU and enter MicroPython mode. See Use
XCTU to enter the MicroPython environment in the appropriate user guide.

Enter MicroPython code
You can use different methods to enter MicroPython code into the MicroPython Terminal on the XBee
device.

n Direct entry: Manually type code into the MicroPython Terminal.
n Paste mode: Use the REPL paste mode to paste copied code into the MicroPython Terminal for

immediate execution.
n Flash mode: Use the REPL flash mode to paste a block of code into the MicroPython Terminal

and store it in flash memory.
n Access file system in MicroPython: Upload code to the file system.

Direct entry
From a serial terminal, you can type code at the MicroPython REPL prompt. When you press Enter,
the line of code runs and another MicroPython prompt appears. Manually typing in code is the
simplest method.

Example

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type print("This is a simple line of code") and then press

Enter. The phrase in quotes prints in the terminal: This is a simple line of code

Exit MicroPython
When you are done coding, exit MicroPython by closing the MicroPython terminal. Any code that has
been executed will continue to run, even if the XBee device is set to Transparent or API mode.
For additional instructions, see the Exit MicroPython mode section in the appropriate user guide.

Display tools
MicroPython mode requires echo to be turned off in terminal emulation. Command mode does not
echo your input back to you. In order to see what you are typing, use the appropriate display tool:

n MicroPython mode: For MicroPython coding, use the XCTU MicroPython Terminal or configure
your terminal emulator for "echo off."

n Command mode: For device configuration that is done in Command mode (initiated by
sending +++ to the device), use the XCTU Serial Console or configure your terminal emulator
for "echo on."

Coding tips
For all XBee devices:

https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm
https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_micropython_terminal_tool.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_serial_console_tool.htm

Use MicroPython Recover an XBee device

Digi MicroPython Programming Guide 17

n Use tabs instead of spaces when indenting lines of code to minimize source code byte count.
n Use the integer division operator (//) unless you need a floating point.
n MicroPython's struct_time does not include the tm_isdst element in the tuple.

For the XBee Cellular Modem:

n The XBee Cellular Modem supports the use of hostnames in socket.connect() calls, unlike
other MicroPython platforms that require an IP address obtained by doing a manual look-up
using socket.getaddrinfo().

For the XBee 3 Zigbee RF Module:

n The Micropython time.time() function returns the number of seconds since the epoch. The
XBee 3 Zigbee RF Module does not have a realtime clock, so it does not support time.time().
To track elapsed time, use time.ticks_ms().

For XBee3 radio modules:

n The counter for the Micropython ticks_us() function will fall behind ticks_ms() by about 1 ms
every 10 seconds.

n If you need a high level of accuracy over a long period of time, use ticks_ms().

Recover an XBee device
If you are unable to communicate with an XBee device when a MicroPython script is running—for
example, if your MicroPython code is changing settings such as ATBD to strange values—you can
recover the XBee device by holding serial break—DIN line low—while the XBee is reset or powered up.
If serial break is held during reset/power-on, the XBee will enter Command mode at 9600 baud, and
MicroPython will not execute until Command mode is exited.
While in Command mode you can then set ATPS to 0 to disable MicroPython autostart, for example.
You can also query and set ATBD or other commands to assist in restoring communication with the
XBee.

Note See Break control for related information.

https://www.digi.com/resources/documentation/digidocs/90001539/#concepts/c_break_control.htm

MicroPython syntax

Syntax refers to rules that must be followed when entering code into MicroPython. If you do not
follow the syntax rules when coding, errors are generated, and the code may not run as expected or
not run at all.
For information about coding errors, see Errors and exceptions.
The following sections describe coding syntax rules.

Colons 19
Indentations 19
Functions 20

Digi MicroPython Programming Guide 18

MicroPython syntax Colons

Digi MicroPython Programming Guide 19

Colons
MicroPython requires a colon (:) after you entered the following statement types:

n Function name and the arguments that function accepts, if any
n Condition statement
n Loop statement

Defining a function
A function consists of the following:

n def keyword
n Function name
n Any arguments the function takes, inside a set of parentheses. The parentheses remain empty

if there are no passed arguments
n The function declaration must be followed by a colon

The code sample below is a basic function definition. Note that a colon is entered after the function
name. This colon defines the following indented lines as part of the function. Indentation is equally
important, and is discussed in Indentations.

def sample_function():
print("I am a sample function!")

After conditional statements and loop statements
A colon is required after each conditional statement and loop statement. The code sample below
shows how the colon is used for a conditional statement (if True:) and for a loop statement (for x in
range(10):).

>if True:
print("Condition is true!")

for x in range(10):
print("Current number: %d" % x)

Indentations
In MicroPython, an indentation tells the compiler which statements are members of a function,
conditional execution block, or a loop. If a line is not indented, that line is not considered a part of the
function, conditional execution block, or loop.
A function declaration, conditional execution block, or loop should be followed by a colon. All code
after the colon that is meant to be part of that block must be indented. For more information about
how colons are used in the code, see Colons.

FOR loop with one statement indented
In this example, only one statement after the initial FOR loop statement (which ends in a colon) is
indented. When the loop is executed, only line 2 of the code is executed. When the loop completes,
the code at line 3 executes.

MicroPython syntax Functions

Digi MicroPython Programming Guide 20

When this code executes, it prints "In the FOR loop, iteration # <number>" 10 times, where
<number> is 0 in the first loop of the code, and 9 at the last loop. Line 3 of the code runs one time,
after the loop completes, printing the phrase "Current number: 9" one time.

for x in range(10):
print("In the FOR loop, iteration # %d" % x)

print("Current number: %d" % x)

FOR loop with two statements indented
In this example, both statements after the initial FOR loop statement (which ends in a colon) are
indented. When the loop is executed, both print statements are printed in each loop iteration.
As in the previous example, the code prints "In the FOR loop, iteration # <number>", where
<number> is 0 in the first loop of the code, and 9 at the last loop. This time, however, line 3 of the
code is run in each loop iteration, and prints the phrase "Current number: number". Both phrases
are printed 10 times, with the <number> starting at 0 and increasing by one on each loop.

for x in range(10):
print("In the FOR loop, iteration # %d" % x)
print("Current number: %d" % x)

Functions
A function is an operation that performs an action and may return a value. A function consists of the
following:

n def keyword. The def keyword is required, and is short for "define".
n Function name.
n Any arguments the function takes, defined by a set of parentheses. The parentheses remain

empty if there are no passed arguments.
n The function statement must be followed by a colon. For more information, see Colons.

The code sample below is a basic function definition. Note that the colon is entered after the function
name and parentheses. This colon defines that everything after that line that is indented is part of the
function. Indentation is equally important, and is discussed in the Indentations section.

def example_function():
print("I am a function!")

Function with arguments
This sample shows how to define a function and then how to call the function to perform an operation
and return a value.

n Line 1: Define the function and define two arguments: x and y.
n Line 2: Define the variable that holds the sum of the arguments as sum_val.
n Line 3: Define a phrase that will be printed to the terminal including sum_val .
n Line 4: The function returns the value of its own variable sum_val. A returned value can be

used and stored outside of the function.
n Line 6: Define the value of the variable global_sum to be the value returned by the function

MicroPython syntax Functions

Digi MicroPython Programming Guide 21

defined in line 1: addition_function(3,4), which is equal to the returned variable sum_val.
n Line 7: Define that a phrase that includes global_sum is printed to the terminal.

def addition_function(x,y):
sum_val = x + y
print("value of sum (x+y): %d" % sum_val)
return sum_val

global_sum = addition_function(3,4)
print("Value of global_sum: %d" % global_sum)

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Errors and exceptions

If something goes wrong during compilation or during execution of code you have entered, you may
get an error. The type of error that occurred and the line number that caused the error will print to the
terminal. Errors can happen for many reasons, such as syntax errors, name errors (which generally
means the variable or function you are referencing is not available), or other more specific errors.

Note Some exceptions have Error in their name and others have Exception.

Common types of errors include:

Syntax error 23
Name error 23
OSError 24
Socket errors 24

Digi MicroPython Programming Guide 22

Errors and exceptions Syntax error

Digi MicroPython Programming Guide 23

Syntax error
A syntax error occurs when a MicroPython code statement has the wrong syntax.

Example
In this example, the syntax is incorrect. A colon is missing after the word "True".

if True print("Condition is true!")

When you press Enter to run the code it generates the following Exception describing the error
(SyntaxError) and the execution path that led to it (line 1 of the code you entered).

Traceback (most recent call last):
File "<stdin>", line 1

SyntaxError: invalid syntax

The correct code syntax is:

if True: print("Condition is true!")

Name error
A name error is generated when a name of an item, such as a variable or function, cannot be found.
This can occur when:

n You typed the name into the code incorrectly.
n You are referencing a name that was never created.
n The name is defined, but is not in scope when you reference it. For example, if you defined the

name in function A, but are referencing the name in function B.

Referencing a name that was not created
In this example, the name deviation_factor was not created. If you reference this name in the code, a
NameError occurs in line 4, as the code references the deviation_factor name, which was not
created.

print("Assigning value to x...")
x = 17
print("Adding deviation_factor to x...")
x = x + deviation_factor

Referencing a name from one function that was created in a
different function
In this example, a variable is created in the example_func. When you run the code, the NameError
references line 8, where the code tries to print local_variable. The variable was created inside the
function example_func, and the scope of that variable, meaning where it can be accessed, is in that
function. The code references local_variable outside of that function.

def example_func():
print("Entering example function...")
local_variable = "I'm a variable inside this function"

Errors and exceptions OSError

Digi MicroPython Programming Guide 24

print(local_variable)

example_func()
print(local_variable)

OSError
MicroPython returns an OSError when a function returns a system-related error.
For example, if you try to send a message on a Zigbee network:

import xbee

xbee.transmit(xbee.ADDR_COORDINATOR, 'Hello!')

This code assumes that the device is associated to a network and able to send and receive data.
If the device is not associated with a network, it produces an OS error:
OSError: [Errno 7107] ENOTCONN.

Socket errors
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

This following socket errors may occur.

ENOTCONN: Time out error
If a socket stays idle too long, it will time out and disconnect. Attempting to send data over a socket
that has timed out produces the OSError ENOTCONN, meaning "Error, not connected." If this
happens, perform another connect() call on the socket to be able to send data again.

ENFILE: No sockets are available
The socket.socket() or socket.connect() method returns an OSError (ENFILE) exception if no sockets
are available. If you are already using all of the available sockets, this error may occur in the few
seconds between calling socket.close() to close a socket, and when the socket is completely closed
and returned to the socket pool.
You can use the following methods to close sockets and make more sockets available:

n Close abandoned sockets: Initiate garbage collection (gc.collect()) to close any abandoned
MicroPython sockets. For example, an abandoned socket could occur if a socket was created in
a function but not returned. For information about the gc module, see the MicroPython
garbage collection documentation.

n Close all allocated sockets: Press Ctrl+D to perform a soft reset of the MicroPython REPL to
close all allocated sockets and return them to the socket pool.

ENXIO: No such device or address
OSError(ENXIO) is returned when DNS lookups fail from calling usocket.getaddrinfo().

http://docs.micropython.org/en/latest/pyboard/library/gc.html
http://docs.micropython.org/en/latest/pyboard/library/gc.html

Keyboard shortcuts

This section includes keyboard shortcuts you can use to make coding with MicroPython easier.

Keyboard shortcuts 26
Select a previously typed statement 26

Digi MicroPython Programming Guide 25

Keyboard shortcuts Keyboard shortcuts

Digi MicroPython Programming Guide 26

Keyboard shortcuts
XCTU version 6.3.6.2 and higher works when the REPL is enabled. The MicroPython Terminal tool
allows you to communicate with the MicroPython stack of your device through the serial interface.
The MicroPython Terminal tool in XCTU supports the following control characters:
Ctrl+A: Enter raw REPL mode. This is like a permanent paste mode, except that characters are not
echoed back.
Ctrl+B: Print the MicroPython banner. Leave raw mode and return to the regular REPL (also known as
friendly REPL). Reprints the MicroPython banner followed by a REPL prompt.
Ctrl+C: Regain control of the terminal. Interrupt the currently running program.
Ctrl+D: Reboot the MicroPython REPL. Soft-reset MicroPython, clears the heap.
Ctrl+E: Enter paste mode. Does not auto-indent and compiles pasted code all at once before
execution. Uses a REPL prompt of ===. Use Ctrl-D to compile uploaded code, or Ctrl-C to abort.
Ctrl+F: Upload code to flash. Uses a REPL prompt of ^^^. Use Ctrl-D to compile uploaded code, or
Ctrl-C to abort.
Ctrl+R: Run code in flash. Run code compiled in flash.

Note If PS is set to 1, code in flash automatically runs once at startup. Use Ctrl-R to re-run it.

Select a previously typed statement
You can use the UP and DOWN arrows on the keyboard to display a previously typed statement at the
current MicroPython prompt.

Note This shortcut does not work: (1) while in paste mode (Ctrl-E) or on any code entered while in
paste mode and (2) while in flash upload mode.

Arrow keys work to scroll back through previous commands, and to edit the current command. Some
terminal emulators (like CoolTerm) might not work with scrollback.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type print("statement 1") and press Enter.
3. At the MicroPython >>> prompt, type print("statement 2") and press Enter.
4. At the MicroPython >>> prompt, type print("statement 3") and press Enter.

5. At the MicroPython >>> prompt, press the UP arrow key on the keyboard. The most recently
typed statement displays at the prompt. In this example, the statement print("statement 3")
displays.

6. You can press the UP arrow key on the keyboard to display the next most recently type
statement, or press the DOWN arrow key on the keyboard to return the previously selected
statement. Continue this process until the statement you want to use displays at the
MicroPython >>> prompt. Use the Left and Right arrow keys and Backspace to make edits to
the previous statement if desired.

7. Press Enter to execute the displayed statement.

Differences between MicroPython and other
programming languages

You may have experience coding in another language, such as C or Java. You should be aware of the
coding differences between other languages and MicroPython.

Memory management 28
Variable types 28
Syntax 28

Digi MicroPython Programming Guide 27

Differences between MicroPython and other programming languages Memory management

Digi MicroPython Programming Guide 28

Memory management
In C, memory has to be allocated by the user for a variable or object before it can be used.
For a variable in C, this is done by a declaration statement as shown in the code below. The first 2
lines create a floating-point (decimal-valued real number) type variable named salary and an integer
named x. The last 2 lines assign values to each of those variables.

float salary;
int x;

x = 9;
salary = 3.0 + x;

In MicroPython, a variable does not need to be declared before it can be used. For example, the
MicroPython code shown below does the same thing as the C code shown in the example above. Each
line does multiple things: creates the variable (the name), assigns it a type based on the assigned
value, determines the space it needs in memory and allocates that space, and then assigns the value
to it.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

x = 9
salary = x + 3.0

Variable types
In C, variables are "statically typed", meaning they are a certain type when they are created, and the
type does not change. This also means the variable can only hold data appropriate for the type.
In the C code sample shown below, an integer type variable named my_variable is created. An
integer type variable can only hold integer values and the amount of memory allocated to this
variable for storing its value is a fixed size- 4 bytes, limiting the range of values to -2,147,483,648 to
2,147,483,647 for a signed integer.

int my_variable;
my_variable = 32;

In MicroPython, variables are dynamically (or automatically) assigned a variable type when the user
assigns a value to the variable. In the code shown below, the variable big_number is assigned an
integer type, allocated the appropriate amount of memory, and the value stored after the user assigns
a value to the variable.

big_number = 99999999999999999999

If a user changes the value of the variable to a text string, MicroPython stores the string and
automatically changes the variable type to string.

big_number = "This is a really big number!"

Syntax
Syntax refers to rules that you must follow when programming. The following sections explain the
differences in syntax between MicroPython and other programming languages.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Differences between MicroPython and other programming languages Syntax

Digi MicroPython Programming Guide 29

Curly braces and indentation
In C, a function or conditional statement is enclosed by curly braces, as shown in the code sample
below.

void action1(void) {
printf("Function action1\n");

}

void action2(void) {
printf("Function action2\n");

}

if condition {
action1();

}
else {

action2();
}

In MicroPython, only a colon is required. Any statements that are part of the function must be
indented. The C code sample shown above would be coded in MicroPython as shown below. After the
function definitions and conditionals, the code to be executed is indented to make it a part of that
block. Indentation is used in MicroPython to tell the compiler which lines are members of a certain
structure.

def action1():
print("Function action1")

def action2():
print("Function action2")

if condition:
action1()

else:
action2()

In C, all of the instructions to be executed for the function some_function() are contained within the
curly braces. Most programmers indent all the instructions within the function for readability, but this
is not required for the code to work.

void some_function(void) {
int x;
x = 7;
x = x + 1;
printf("Incremented x!\n");
x = x + 2;
printf("Incremented x by 2!\n");

}

In MicroPython, indentation is required to tell the compiler what lines of code are to be executed for
the function some_function(), as shown in the example below.

Differences between MicroPython and other programming languages Syntax

Digi MicroPython Programming Guide 30

def some_function():
x = 7
x = x + 1
print("Incremented x!")
x = x + 2
print("Incremented x by 2!")

When nesting conditions and functions, C relies on curly braces, as shown in the example below. Each
level of code is indented to make it more readable, but it is not required for the code to run.

void some_other_function(void) {
if (condition) {

do_something();
}

}

In MicroPython, indentation is the only thing telling the compiler what instructions belong to what
function or condition. The nested C code example shown above is coded in MicroPython in the
example below:

def some_other_function():
if condition:

do_something()

Semicolons
Statements in C are followed by a semicolon, as shown in the example below.

int x;
x = 7 + 3;
action1();

In MicroPython, statements are ended by starting a new line. A special symbol or character is not
needed.

x = 7 + 3
action1()

Increment operator
C and Java have an "increment" operator, which lets the user increase the value of a variable by 1.
See the following excample:

int x;
x = 1;
x++; // x is now 2
x++; // x is now 3

MicroPython does not have an "increment" operator. To do the equivalent in MicroPython the variable
would have to have 1 explicitly added to it, or use the += operator.
The += operator states that a variable equals itself plus a value. So, in the MicroPython code block
below, line 3 is basically shorthand for line 2. They both do the same operation: set x equal to x plus
1.

Differences between MicroPython and other programming languages Syntax

Digi MicroPython Programming Guide 31

x = 1
x = x + 1 # x is now 2
x += 1 # x is now 3

Logical operators
In C, the logical operators AND, OR, and NOT are represented by &&, ||, and ! respectively. The C code
block below shows the logical operators in use.

// if it's sunny out, AND NOT cold outside
if (sunny_outside && !cold_outside) {

// if you have a towel AND an umbrella
if (have_towel && have_umbrella) {

// if you have a bike OR a car
if (have_bike || have_car) {

// then you will go to the beach
go_to_beach();

}
}

}

In MicroPython, the operators for AND, OR, and NOT are simply and, or, and not, which is much more
intuitive. The MicroPython code shown below has the same function as the C code shown above.

if sunny_outside and not cold_outside:
if have_towel and have_umbrella:

if have_bike or have_car:
go_to_beach()

Develop applications on an XBee device

Space allocated to MicroPython 33
Code storage 33
How to organize your code 34
Run code at startup 34
Monitor memory usage 34
Efficient coding 37
Application evolution 38
Digi modified slicing for bytes and strings operations 40

Digi MicroPython Programming Guide 32

Develop applications on an XBee device Space allocated to MicroPython

Digi MicroPython Programming Guide 33

Space allocated to MicroPython
The XBee device allocates space in various locations for use by MicroPython.

n Heap (32 kB of RAM): Area used for variables, objects and modules imported from .py
and .mpy files in the file system.

n Stack (4 kB of RAM): RAM used by the MicroPython interpreter/task running as part of the XBee
firmware. If your function has tail recursion, try to rewrite it as a loop to reduce stack use.

n File System: Storage area for .py and .mpy files, along with SSL/TLS certificates and other data
files. File system is managed using ATFS commands, the MicroPython os module, and XCTU.

n Frozen/bundled .mpy files (32 kB of device flash): Storage area for compiled modules that can
execute in place. Standard MicroPython builds for other hardware (like the pyboard) refer to
these as "frozen" .mpy files but only support embedding them into the firmware at compile-
time. The XBee device adds an os.bundle() method to freeze multiple .mpy files into the
device flash so they can execute in place with a minimal impact on heap.

Note On XBee 3 Cellular devices with firmware ending in *15 or newer, the MicroPython heap has
been increased to 64 kB and the MicroPython stack has been increased to 6 kB of RAM.

Code storage
The XBee device stores code in different formats.

Built-in modules embedded in XBee firmware (device flash)
Many of the modules you import into your program are actually implemented in compiled C code that
exists as part of the MicroPython interpreter embedded in the XBee firmware and stored on the XBee
device's flash. These modules only use heap space for variables and any objects you instantiate, like a
machine.Pin() or network.Cellular() object.

Source code in .py files (file system)
You can create MicroPython modules and store them as .py files on the file system of the XBee
device's SPI flash. Upload the modules over the serial port via YMODEM protocol using XCTU or a
standard terminal emulator. When you import one of these files, MicroPython has to parse and
compile it to a form that it can execute from the heap.

Parsed and compiled code in .mpy files (file system)
Parsing and compiling MicroPython source code requires heap space, and larger programs require
more space than is available on the XBee device. XBee devices include the os.compile() method for
compiling a .py file into a .mpy file. The maximum size for compiling a .py file on the device depends
on its contents, but you may run out of memory trying to compile a 13 kB or larger file. In those cases,
you can use mpy-cross on a PC (Mac, Linux, Windows) to pre-compile your source code and upload
the resulting .mpy file instead.

Executable code on MicroPython heap (device RAM)
When you enter code in the REPL or import a module from the file system (a .py or .mpy file),
MicroPython places it in the heap where it can execute in place. See documentation for the gc and
micropython modules for methods to report on heap memory usage.

http://docs.micropython.org/en/v1.7/esp8266/library/os.html
http://docs.micropython.org/en/v1.9.3/pyboard/library/gc.html
http://docs.micropython.org/en/v1.9.3/pyboard/library/micropython.html

Develop applications on an XBee device How to organize your code

Digi MicroPython Programming Guide 34

Compiled modules relocated from file system to device flash
Use os.bundle() to freeze/embed multiple .mpy files to an area of the XBee device's internal flash
where they can execute in place. This can free up heap space for use by the running program.

How to organize your code
To create the lib directory, format your device. The main execution program is always called main.py
and should be located in /flash.
The modules and libraries you import should be located in /flash or /flash/lib.
You can load files using XCTU, any YMODEM compliant client or using PyCharm. PyCharm is the most
user friendly for developers.
When you manually load files onto an XBee3 device for the first time, the MicroPython interpreter
prompts you to format the file system. XCTU formats the files ystem using the AT FS FORMAT
command, and then you can download the files to the device using XCTU or the tools mentioned
above.

Run code at startup
If you configure the PS (Python Startup) command = 1, the XBee device automatically tries to
run /flash/main.py or /flash/main.mpy (in that order) when the XBee device powers up or resets. It
also tries to run that code after a soft reboot—for example, via CTRL-D in the "friendly" REPL but not
the "raw" REPL, or calling machine.soft_reset() in your code. During development, you can
use CTRL-R to run the code as often as you'd like (for testing purposes), but if you
replace /flash/main.py or /flash/main.mpy using a method other than Flash Upload Mode (for
example, YMODEM upload), you will have to reset the REPL for it to reload code from those files. Each
time you press CTRL-R it tells you if you are loading new code—and whether it is using main.py
or main.mpy—or just running the same code as the last time you pressed CTRL-R.

>>> # press CTRL-RLoading /flash/main.mpy...
Running bytecode...
Hello, world!

>>> # press CTRL-R
Running bytecode...
Hello, world!

As you can see above, it loaded from /flash/main.mpy the first time, but the second time it re-ran the
same code.

Monitor memory usage
MicroPython provides various tools you can use to monitor memory usage in the heap (RAM allocated
for MicroPython's use).

n The gc module
n The micropython module

The gc module
You can import gc for tools to initiate garbage collection (deletion of objects on the heap no longer in
use) and measure heap usage. Use gc.mem_free() and gc.mem_alloc() for counts of available and
used memory. The two values should always add up to the same number. Due to the overhead

Develop applications on an XBee device Monitor memory usage

Digi MicroPython Programming Guide 35

required by heap management, the 32 kB heap (32,768 bytes) only has 32,000 bytes available for
allocation.
Use gc.collect() to force garbage collection of unreferenced objects in the heap. You should always do
this before calling gc.mem_free() or gc.mem_alloc() in order to get an accurate value, or between
successive calls to see how much space was released.

>>> import gc
>>> gc.mem_free()
31232
>>> gc.mem_alloc()
896
>>> gc.mem_free() + gc.mem_alloc()
32000
>>> gc.collect()
>>> gc.mem_free()
31472

The micropython module
You can import micropython to get detailed information on heap memory usage, beyond the
summaries provided by gc.mem_free() and gc.mem_alloc().

micropython.mem_info()
Calling mem_info() without any parameters prints a summary of heap usage. Calling it with a
parameter—for example, micropython.mem_info(1)—adds a detailed report of memory usage on the
heap. Each line of the report starts with a memory offset into the heap, and then 64 characters
representing 16-byte blocks with the following meanings:

Character Description

. unused (available) block

h start (head) of an allocation (unknown content)

= continuation of allocation

A start of array or bytearray

B start of function/bytecode

D start of dict

F start of float

L start of list

M start of module

S start of string or bytes

T start of tuple

The example below shows heap usage before and after importing a module (urequests) stored as
an mpy file on the XBee device.

Develop applications on an XBee device Monitor memory usage

Digi MicroPython Programming Guide 36

>>> import micropython
>>> micropython.mem_info()
stack: 596 out of 3584
GC: total: 32000, used: 688, free: 31312
No. of 1-blocks: 9, 2-blocks: 14, max blk sz: 3, max free sz: 1950
>>> micropython.mem_info(1)
stack: 596 out of 3584
GC: total: 32000, used: 688, free: 31312
No. of 1-blocks: 9, 2-blocks: 14, max blk sz: 3, max free sz: 1950
GC memory layout; from 20001d10:
00000: h=Bhhhh=Bh=h=h=Bh=hhh=h=h==Bh=h=h=h==.h=h=......h=..............

(30 lines all free)
07c00:
>>> import urequests
>>> micropython.mem_info(1)
stack: 596 out of 3584
GC: total: 32000, used: 5168, free: 26832
No. of 1-blocks: 63, 2-blocks: 52, max blk sz: 45, max free sz: 1192
GC memory layout; from 20001d10:
00000: h=Bhhhh=Bh=h=h=Bh=Bhh=h=h==Bh=h=h=h==Bh=h=h=h=MDh=h=Bh=hh=h=Bh==
00400: DDSSSh=h=BBSBhBhBBBBh===h===T=BBh=======h=====B==h====BSh=h=h=h=
00800: =h=......h=..S..
00c00:h=======...............................h=======
01000: ===..............Sh=................................h=======....
01400:Sh=h=...h=h=...h=.....h=..........
01800:h=..................................h=h==........hh=.......
01c00: ...h=.............
02000: ...h=..h...Sh=======..
02400: ..h=........
02800:h=.....h=.....h=...............................h=====h===
02c00: =h=h==h=====hShShShShS
03000: hh=hh=hh=hh=hh=hh=hh==hh==hh====hh=hh==h........................

(18 lines all free)
07c00:
>>> import gc
>>> gc.collect()
>>> micropython.mem_info(1)
stack: 596 out of 3584
GC: total: 32000, used: 3952, free: 28048
No. of 1-blocks: 57, 2-blocks: 27, max blk sz: 45, max free sz: 1192
GC memory layout; from 20001d10:
00000: h=Bhhhh=h=h==h=h=..h=.h=........h=........h=..MD................
00400: DDSSSh=..BBSBhBhBBBBh===h===..BBh=======h=====B==h====BSh=h=h=..
00800: ...h=........Sh.......hBh=h=........h=..........................
00c00:h=======...............................h=======
01000: ===..............Sh=................................h=======....
01400:S.................................
01800: ...h==........hh=.......
01c00: ...h=.............
02000:h...Sh=======..

(2 lines all free)
02c00: ...h==h=====hShShShShS
03000: hh=hh=hh=hh=hh=hh=hh==hh==hh====hh=hh==h........................

(18 lines all free)
07c00:

micropython.qstr_info()
MicroPython stores identifiers (the names of things in your code – variables, methods, classes, and so
forth) in pools as "QSTR" objects. In doing so, it can reference the full QSTR in bytecode by using a 16-

Develop applications on an XBee device Efficient coding

Digi MicroPython Programming Guide 37

bit index into the pool. The XBee firmware has a static QSTR pool embedded in it with names of built-
in modules and their identifiers. Any Python code that runs on the XBee device can reference those
existing names in its compiled bytecode. New identifiers go into dynamic QSTR pools allocated in
MicroPython's heap.
You can use the qstr_info() method to report on the contents of those allocated pools. Without a
parameter, you will just see summary usage information. With a parameter, it prints the contents of
each QSTR stored in the pool.

Information reported by micropython.qstr_info()

n_pool number of QSTR pools allocated

n_qstr number of QSTRs allocated

n_str_data_bytes combined size of QSTR contents

n_total_bytes total bytes used by the QSTR contents and pool overhead

At the beginning of the following example, MicroPython has not allocated any QSTR pools. In
importing a module (urequests) stored as an mpy file on the XBee device, MicroPython allocated two
pools, totaling 50 strings of 464 bytes and using a total of 736 bytes of the heap.

>>> import micropython
>>> micropython.qstr_info(1)
qstr pool: n_pool=0, n_qstr=0, n_str_data_bytes=0, n_total_bytes=0
>>> import urequests
>>> micropython.qstr_info(1)
qstr pool: n_pool=2, n_qstr=50, n_str_data_bytes=464, n_total_bytes=736
Q(port)
Q(proto)
Q(https:)
Q(:)
Q(s)
Q(wrap_params)
Q(Host)
Q(Host: %s

)
Q(k)
Q(:)
[...30 deleted QSTR entries...]
Q(method)
Q(url)
Q(data)
Q(headers)
Q(stream)
Q(verify)
Q(cert)
Q(scheme)
Q(host)
Q(http:)

Efficient coding
Follow recommendations from the MicroPython documentation on Maximising MicroPython Speed.

http://docs.micropython.org/en/latest/pyboard/reference/speed_python.html

Develop applications on an XBee device Application evolution

Digi MicroPython Programming Guide 38

Feel free to use docstrings (string literals used to document code) in your programs, as the parser will
ignore them and they are not included in compiled code or the .mpy file generated from the .py
source.

Application evolution
As you work on your MicroPython application, you will likely take portions of it though a series of
versions as it evolves from incomplete code (undergoing active development and debugging) to
feature-complete, debugged modules that rarely change. The following topics provide some
techniques you will use along the way to creating a production-ready application. If you are not
already familiar with the Python concept of modules, you can learn about them at
https://docs.python.org/3/tutorial/modules.html.

One-liners in the REPL
If you just want to test the syntax of a few lines of code, experimenting in the REPL (and even a
Python3 interpreter on your PC) can be a good place to start.

Short blocks in paste mode
If you are working on a multi-line sequence or a complete function, you might do so in an editor on
your computer, copy it to your clipboard, press Ctrl+E in the MicroPython REPL, paste the code, and
then press Ctrl+D for immediate execution.

Flash upload mode
Flash upload mode is similar to paste mode, but stores the compiled code so you can run it more than
once or automatically run it at startup. Press Ctrl+F in the MicroPython REPL, paste the code, and
then press Ctrl+D to compile it. It stores the compiled code in /flash/main.mpy and you can then run
it by pressing Ctrl+R. Set ATPS = 1 to automatically run that code at startup. Flash upload mode
prompts you about changing the current ATPS value; you can press Enter to accept the default of
leaving it unchanged.
Storing compiled code requires the file system be formatted first, if the file system is not formatted,
then the following error is generated: OSError: [Errno 7019] ENODEV
You can use the following method to format the file system from within MicroPython:

import os
os.format()

Note When uploading code through flash upload mode, /flash/main.mpy will be deleted if it already
exists. On file systems that do not support deleting files (see Which features apply to my device?), the
space used by the existing /flash/main.mpy file is not reclaimed. While developing using flash upload
mode on these devices, you may have to reformat the device if it runs out of space.

Modules stored as .py files
When you have a collection of related functions, you will probably want to combine them into a
module that you can import into your main program and other modules. If you are going through lots
of revisions, it might be easiest to edit a .py file on your computer and then upload it to the XBee
device using XCTU or another terminal program. If you have previously loaded the module in
MicroPython with the import statement, you need to perform a soft-reboot (press Ctrl+D at a REPL
prompt) or use the following method to delete the old module and re-import it:

https://docs.python.org/3/tutorial/modules.html

Develop applications on an XBee device Application evolution

Digi MicroPython Programming Guide 39

import sys
def reload(mod):

mod_name = mod.__name__
del sys.modules[mod_name]
return __import__(mod_name)

After running that code, you can type reload(foo) at a REPL prompt to reload a module from foo.py
or foo.mpy.

Compiled modules stored as .mpy files
At some point, you may not have enough space in the MicroPython heap to compile and load multiple
modules. In that case, you can pre-compile each .py file to a .mpy file to reduce the memory
requirements of an import statement. Use the os.compile() method to create a .mpy file on the XBee
device itself, or install mpy-cross on your PC and do it there before uploading to the XBee
device. With mpy-cross, you will have the added benefit of identifying syntax errors on your computer
before spending time uploading the file to the device.
The os.compile() process prints memory usage information to help identify when you are reaching
the limitation of the XBee device's heap. In the example below, you can see that the parsing
of urequests.py requires 7696 bytes (8336 - 640). The compilation step converts the parsed Python
source code to compiled bytecode, and is usually the most memory-intensive step of creating the mpy
file. But once it is complete, garbage collection releases most of that temporarily allocated memory
and you see just the 3248 bytes (3888 - 640) required for the compiled code.
The final step saves the compiled module to the file system, but as you can see from the
final gc.mem_alloc() call, there is still 608 bytes (1248-640) of heap in use. This is from the QSTR
pools created when parsing and compiling the code. Since QSTR pools are permanent, the only way
to recover that memory is to perform a soft reboot of the MicroPython REPL using Ctrl+D.

>>> import os
>>> os.chdir('lib')
>>> import gc
>>> gc.collect()
>>> gc.mem_alloc()
640
>>> os.compile('urequests.py')
stack: 644 out of 3584
GC: total: 32000, used: 640, free: 31360
No. of 1-blocks: 11, 2-blocks: 6, max blk sz: 8, max free sz: 1909
Parsing urequests.py...
stack: 644 out of 3584
GC: total: 32000, used: 8336, free: 23664
No. of 1-blocks: 19, 2-blocks: 11, max blk sz: 89, max free sz: 1407
Compiling...
stack: 644 out of 3584
GC: total: 32000, used: 3888, free: 28112
No. of 1-blocks: 44, 2-blocks: 34, max blk sz: 45, max free sz: 1225
Saving urequests.mpy...
>>> gc.collect()
>>> gc.mem_alloc()
1248

Compiled modules via Flash upload mode
A quick way to compile a module without having to use YMODEM is to use Flash upload mode, which
saves the pasted code as /flash/main.mpy, and then use os.replace('/flash/main.mpy',

Develop applications on an XBee device Digi modified slicing for bytes and strings operations

Digi MicroPython Programming Guide 40

'/flash/lib/foo.mpy') to replace the old module foo compiled code. This can only be done on
modules that support renaming files—see Which features apply to my device?.

Compiled modules embedded in device flash
You can maximize your application size by writing your code as modules, cross-compiling them on a
PC, uploading to the XBee device and then using os.bundle() to freeze/embed them into the flash
where they can run in-place, with minimal heap usage.
Call os.bundle() without any parameters to get a list of modules embedded in the
flash. Call os.bundle(None) to erase the modules embedded in the flash.

MicroPython v1.9.4-803-g4b0a8eada-dirty on 2018-06-21; XBC LTE Cat 1 Verizon
with EFM32G
Type "help()" for more information.
>>> import os
>>> os.bundle()
['urequests', 'umqtt/simple']
>>> os.bundle(None)
Erased bundled modules.
>>> os.bundle()
[]

Call os.bundle('mod1.mpy', 'mod2.mpy', 'package/mod3.mpy') to embed modules mod1, mod2,
and package.mod3. When you import a module, MicroPython checks for an embedded/frozen version
of it before looking to the file system.

MicroPython v1.9.4-803-g4b0a8eada-dirty on 2018-06-21; XBC LTE Cat 1 Verizon
with EFM32G
Type "help()" for more information.
>>> import os
>>> os.chdir('lib')
>>> os.bundle('urequests.mpy', 'umqtt/simple.mpy')
bundling urequests.mpy...2196 bytes of raw code
bundling umqtt/simple.mpy...2916 bytes of raw code
Used 72/371 QSTR entries.
stack: 844 out of 3584
GC: total: 32000, used: 12288, free: 19712
No. of 1-blocks: 114, 2-blocks: 77, max blk sz: 45, max free sz: 775
Embedded 2 module(s) to 5851/31152 bytes of flash.
soft reboot

MicroPython v1.9.4-803-g4b0a8eada-dirty on 2018-06-21; XBC LTE Cat 1 Verizon
with EFM32G
Type "help()" for more information.
>>> import os
>>> os.bundle()
['urequests', 'umqtt/simple']
>>> import urequests
>>> import umqtt.simple

Digi modified slicing for bytes and strings operations
Upstream MicroPython only allows bytes and string objects to be sliced with a step size of one. Digi
has modified these types to allow standard slicing syntax with other values, including negative.

Power management in MicroPython

Prevent sleep from MicroPython 42
Initiate sleep from MicroPython 43
Sleeping with AT commands 44
Idle a device from MicroPython 44

Digi MicroPython Programming Guide 41

Power management in MicroPython Prevent sleep from MicroPython

Digi MicroPython Programming Guide 42

Prevent sleep from MicroPython
Note This section only applies to devices that support the Power Management feature.

When the XBee device enters sleep mode, any MicroPython code currently executing is suspended
until the device comes out of sleep. When the XBee device comes out of sleep mode, MicroPython
execution continues where it left off.
If you use SM sleep, MicroPython can use XBee().wake_lock to force the device to stay awake during
critical operations, for example, when the device is configured for one of the ATSM sleep options
(excluding SM = 6 MicroPython Sleep). The following example shows how to use the XBee().wake_
lock:

Note wake_lock is a context manager. See Context Manager Documentation for more instructions on
usage.

import xbee
xb = xbee.XBee()

do things interruptable by sleep

with xb.wake_lock:
do important things

back to things that are safe to interrupt

XBee Cellular Modem:
Upon entering sleep mode, the XBee Cellular Modem closes any active TCP/UDP connections and
turns off the cellular component. As a result, any sockets that were opened in MicroPython prior to
sleep report as no longer being connected. This behavior appears the same as a typical socket
disconnection event.
The following is a summary of the behavior to expect from the main socket methods:

n socket.send raises OSError: ENOTCONN
n socket.recv returns an empty string, the traditional end-of-file return value

Note As of the x09 firmware, all time-related APIs include the time spent in sleep. Prior firmware
versions paused the millisecond timer used by time.sleep(), time.sleep_ms() and time.time(), so
having a 15-second SM (Sleep Mode)-triggered sleep occur during a MicroPython time.sleep(30)
would result in a 45 second delay in execution. With the x09 firmware, it only delays for 30 seconds.

XBee 3 Zigbee RF Module, XBee 3 802.15.4 RF Module, XBee 3
DigiMesh RF Module description:
Upon entering sleep mode the device shuts down all peripheral resources for the lowest possible
current consumption, then upon device wake the peripheral resources are restored and the device
continues with MicroPython code execution.

http://book.pythontips.com/en/latest/context_managers.html#implementing-a-context-manager-as-a-class

Power management in MicroPython Initiate sleep from MicroPython

Digi MicroPython Programming Guide 43

Initiate sleep from MicroPython
Note This section only applies to devices that support the Power Management feature.

XBee Cellular Modem:
If you disable sleep modes by setting SM (Sleep Mode) to 0, you can use XBee().sleep_now() and
XBee().wake_reason() to control when the module sleeps. When selecting sleep and wake times on
the XBee Cellular Modem, take into consideration the time it takes to close network connections and
shut down the cellular connection before sleeping, and then to restore the connection when waking
back up.

XBee 3 Zigbee RF Module, XBee 3 802.15.4 RF Module, XBee 3
DigiMesh RF Module:
When setting SM (Sleep Mode) to 6, you can use XBee().sleep_now() and XBee().wake_reason() to
control when the device sleeps. The device sleeps for the time period programmed with an optional
early pin wake (DTR, commissioning button, or SPI_SSEL).

sleep_now(timeout_ms, pin_wake=False)

Sleeps for timeout_ms milliseconds and then wakes.

n If pin_wake is set to True, the device will wake before timeout_ms if DIO8 transitions from
high to low—that is on a falling edge of the line.

n If timeout_ms is None then pin_wake must be set to True and the device will sleep
indefinitely until a falling edge on DIO8 occurs.

n If a timeout is specified—timeout_ms is not None—the function will return the actual elapsed
time in milliseconds after the device wakes.

n Throws an EALREADY OSError exception if SM is not configured correctly for MicroPython to
control sleep.

Note The sleep time reported includes code execution overhead—several milliseconds.

wake_reason()

Returns either xbee.RTC_WAKE if the full timeout_ms elapsed, or xbee.PIN_WAKE when enabled
and DIO8 woke the device early.
The following example shows power management with MicroPython:

from machine import Pin
import time
import xbee

def read_switch(iopin = None):
if iopin.value() == 0:
print("SW2 has been pressed!")
return True

return False

Configure DIO0(SW2) to put module to sleep

Power management in MicroPython Sleeping with AT commands

Digi MicroPython Programming Guide 44

dio0 = Pin('D0', Pin.IN, Pin.PULL_UP)

x = xbee.XBee()

print("\n")
print("How to use this example:")
pressing SW2 triggers sleep for 30 seconds
print("Option 1 press SW2 and let the program run until it wakes from 30
seconds sleep.")
print("Option 2 press SW2 to put the module under sleep for 30 seconds, "

"then while its sleeping toggle DTR by Close/Open MicroPython
Terminal Com port.")
print("Option 3 press SW2 then do ^C (cancel) to exit example program
while its sleeping")

print("Waiting for SW2 to be pressed to Sleep. Please Press SW2")

while True:
sw2 = read_switch(dio0)
if sw2:
sleep for 30 seconds, wake early DTR toggled active.
print("sleeping for 30 seconds")
sleep_ms = x.sleep_now(30000, True)
print("slept for %u ms" % sleep_ms)
if x.wake_reason() is xbee.PIN_WAKE:

print("woke early on DTR toggle")

Sleeping with AT commands
Even on devices that do not support the Power Management feature, sleep can be controlled normally
using the SM AT command while MicroPython code is running. When the XBee device enters deep
sleep mode, any MicroPython code currently executing is suspended until the device comes out of
sleep. When the XBee device comes out of sleep mode, MicroPython execution continues where it left
off.

Idle a device from MicroPython
Note This section only applies to the XBee 3 Zigbee RF Module, XBee 3 802.15.4 RF Module, and XBee
3 DigiMesh RF Modules. See Which features apply to my device? for a list of the supported features.

Normally, an XBee device acting as a sleeping end device can receive data any time it is awake. If a
MicroPython application needs the device to be awake but does not need to receive RF transmissions,
the application can put the XBee device into an idle state. When the device is in the idle state, current
draw is reduced and the device will not receive any RF transmissions.

Note This only affects the device's primary RF interface—if Bluetooth is enabled, the device will still
be able to communicate over Bluetooth and the current reduction will be less.

Enter and exit the idle state
Use the xbee.idle_radio() function to put the device into a forced idle state. xbee.idle_now(true)
puts the device into this state, and xbee.idle_now(false) returns it to normal operation.

Power management in MicroPython Idle a device from MicroPython

Digi MicroPython Programming Guide 45

Transmit from an idle device
While the device is idle, xbee.transmit() can be used to send packets just like in normal operation.
The device will be enabled just long enough to complete the transmission, then return to the idle
state.

Send data to an idling device
Because a device that uses the idle_radio() feature is not always able to receive transmissions, you
must take care if data needs to be sent to an idling device. Functionally, sending data to an idling
device is equivalent to sending data to a sleeping device. See the sections on sleep and indirect
messaging in the user guide for the protocol you use for more information on how to transmit to a
sleeping device.

Poll for data while the device is idle
This section only applies to the XBee 3 Zigbee RF Module. See Which features apply to my device? for
a list of the supported features.
The Zigbee protocol uses a polling system to deliver messages to sleeping—or idling—end devices.
Messages for a sleeping end device are stored on a nearby router—the "parent"—and the sleeping end
device periodically queries the router to see if any messages are available. When the device is idled,
this querying must be triggered by the MicroPython application instead of occuring automatically.
In order to receive data while the device is idled, the MicroPython application must periodically call
xbee.poll_now() to check for incoming data. Calling poll_now() causes the device to check for
messages stored by its parent, and will retrieve a single message from the parent if any are available.
xbee.poll_now() does not return the retrieved packet—the packet is instead passed to MicroPython
via the normal method, either by the application calling xbee.receive() or through a callback if one is
registered.

Note xbee.poll_now() is a non-blocking call, meaning it will return before the polling is complete. It
can take approximately 10 ms after calling poll_now() before a message is available to xbee.receive
().

We recommend registering a callback for received packets when using xbee.poll_now(). That way,
once the packet is retrieved from the parent it is immediately handled by the application.
Since xbee.poll_now() only retrieves a single packet from the parent, it may need to be called more
than once if more than one message may be received between polls. One way to do so is by calling
xbee.poll_now() again every time a packet is received, or in the receive callback.

Configure the parent
You must configure two parameters on the network—including non-sleeping devices—in order for
messages to be delivered correctly on the network.

n SP determines how long the parent will hold on to messages for a sleeping device. The parent
will hold on to messages for three times the value of SP. If the end device always calls poll_
now() more frequently than this, no data will be dropped.

n ET must be set to at least the longest time the sleeping device will go between calls to poll_
now(). This value is used as a network timeout; if the end device goes longer than this without
polling, it is considered to have left the network and will need to rejoin the next time it polls.

Power management in MicroPython Idle a device from MicroPython

Digi MicroPython Programming Guide 46

Example
The following code shows some basic usage examples of the idle_radio and poll_now functions. A
more detailed sample application can be found in the xbee-micropython github repository.

import xbee
import time

Idle the radio
xbee.idle_radio(True)

Define a callback for received packets
def rx_callback(packet):

print(packet)
xbee.poll_now()

xbee.receive_callback(rx_callback)

Send a transmission with the radio idled
xbee.transmit(xbee.ADDR_COORDINATOR, "payload", tx_options=1)

With the radio idled, we have to call poll_now() occasionally or risk
dropping data
while True:

Application code, etc. can go here
time.sleep(1)
Check for new messages
xbee.poll_now()
rx_callback() will be called if the poll comes back with a message

https://github.com/digidotcom/xbee-micropython

Access the primary UART

How to use the primary UART 48
Example: read bytes from the UART 48
Example: read the first 15 bytes from the UART 49

Digi MicroPython Programming Guide 47

Access the primary UART How to use the primary UART

Digi MicroPython Programming Guide 48

How to use the primary UART
MicroPython provides access to the primary UART via sys.stdin (see sys.stdin limitations) and
sys.stdout (and sys.stderr as an alias to sys.stdout). Unlike Python3, MicroPython does not allow
overriding stdin, stdout and stderr with other stream objects.
sys.stdin sys.stdin supports standard stream methods read and readline in text mode, converting
carriage return (\r) to newline (\n).

Note Do not use the stdin methods readlines or readinto because they will be removed in future
firmware.

Use sys.stdin.buffer (instead of sys.stdin) for binary mode without any line ending conversions. The
read() method takes a single, optional parameter of the number of bytes to read. For a positive value,
read() blocks until receiving that many bytes from the standard stream methods primary UART. For
non-blocking, call read() without the parameter (or with a negative value) and it returns whatever
characters are available or None if no bytes are waiting.
sys.stdout supports the write() method in text mode, sending an additional carriage return (\r)
before each newline (\n). Use sys.stdout.buffer (instead of sys.stdout) for binary mode without any
line ending conversions. The write() method buffers its output, and can return before sending all
bytes out on the UART.

sys.stdin limitations
Note that sys.stdin provides access to a filtered input stream with the following limitations:

n Only works as long as ATAP = 4.
n You can only configure the primary serial port via AT commands (for example ATBD to set the

baud rate) and not from MicroPython.
n Receiving a Ctrl-C character generates a KeyboardInterrupt.

l You can change the interrupt character using micropython.kbd_intr(ch) where ch is the
new character to use (3 corresponds to Ctrl-C) or -1 to disable the keyboard interrupt
entirely.

l MicroPython always resets the keyboard interrupt to Ctrl-C at the start of each REPL line,
before executing code entered via paste mode, and when executing compiled code at
startup or via Ctrl-R.

n The escape sequence (configured with ATCC, +++ by default) protected by a guard time
(configured with ATGT, 1 second by default) of no data before and after the escape sequence
will always enter Command mode.
l Escape sequence handling can cause delays when reading from sys.stdin.
l You can send ATPY^ in Command mode to force a KeyboardInterrupt, even if it was

disabled via micropython.kbd_intr(-1).

Example: read bytes from the UART
The following example reads bytes from the UART and prints it out one at a time until a keyboard
interrupt occurs when you press Ctrl+C.

from sys import stdin, stdout

Access the primary UART Example: read the first 15 bytes from the UART

Digi MicroPython Programming Guide 49

while True:
data = stdin.buffer.read(1)

Example: read the first 15 bytes from the UART
The following example reads the first 15 bytes from the UART and prints it out one at a time. Notice
that keyboard interrupts are disabled.

import micropython
from sys import stdin, stdout

interrupt_char = -1
micropython.kbd_intr(interrupt_char)

for _ in range(15):
data = stdin.buffer.read(1)

stdout.buffer.write(data)

REPL (Read-Evaluate-Print Loop) examples

A REPL is a language shell that accepts user input, evaluates the input, and then returns a result.
This section contains examples of specific MicroPython REPL commands on the XBee device. For
information about MicroPython REPL rules in general, see
http://docs.micropython.org/en/latest/pyboard/reference/repl.html.

Ctrl+A: Enter raw REPL mode 51
Ctrl+B: Print the MicroPython banner 51
Ctrl+C: Regain control of the terminal 53
Ctrl+D: Reboot the MicroPython REPL 54
Ctrl+E: Enter paste mode 54
Ctrl+F: Upload code to flash 55
Flash memory and automatic code execution 57
Perform a soft-reset or reboot 60

Digi MicroPython Programming Guide 50

http://docs.micropython.org/en/latest/pyboard/reference/repl.html

REPL (Read-Evaluate-Print Loop) examples Ctrl+A: Enter raw REPL mode

Digi MicroPython Programming Guide 51

Ctrl+A: Enter raw REPL mode
Use this command to enter raw REPL mode, which enables you to execute pasted code. This acts like
a paste mode, but the characters are not echoed back.
This command is used for machine-to-machine communication.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the code you want to paste into the XBee device. For example:

print("Hello world")

3. Press Ctrl+A to enter raw REPL mode.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
raw REPL; Ctrl-B to exit
>

4. Right-click at the MicroPython > prompt and select the Paste option.
5. Press Ctrl+D to save the paste action. An "OK" confirmation and the pasted code displays in

the line. The code is saved to the XBee device and immediately executed.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> raw REPL; Ctrl-B to exit
>OKHello world
>

6. Press Ctrl+B to exit raw REPL mode.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> raw REPL; Ctrl-B to exit
>OKHello world
>
MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>

Ctrl+B: Print the MicroPython banner
Use this command to perform one of the following:

n If MicroPython is in raw REPL mode, press Ctrl+B to return to the regular REPL and print the
MicroPython banner.

n If MicroPython is in the regular REPL mode, press Ctrl+B to print the banner.

The banner displays the MicroPython version you are using and the build date for that version.
Pressing Ctrl+B does not reboot the REPL. If you need start a fresh REPL session, use the Ctrl+D:
Reboot the MicroPython REPLcommand to reboot the REPL.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

REPL (Read-Evaluate-Print Loop) examples Ctrl+B: Print the MicroPython banner

Digi MicroPython Programming Guide 52

Print the banner
This example shows how to print the banner.

1. Access the MicroPython environment.
2. Press Ctrl+B to print the banner.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>

Print the banner and verify that the memory was not wiped
In this example, a variable "a" is assigned the value "test". When you press Ctrl+B, the banner is
printed.
You can verify that the memory was not wiped by entering the variable "a" and seeing that the value
"test" is the output.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type a = "test", then press Enter. This statement assigns the

value "test" to the variable "a".
3. At the MicroPython >>> prompt, type a, then press Enter. The value assigned to the variable

displays.
4. Press Ctrl+B to print the banner.
5. At the MicroPython >>> prompt, type a and press Enter. The assigned value for the variable is

returned.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

REPL (Read-Evaluate-Print Loop) examples Ctrl+C: Regain control of the terminal

Digi MicroPython Programming Guide 53

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> a = "test"
>>> a
'test'
>>> <Ctrl-B>
MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> a
'test'
>>>

Ctrl+C: Regain control of the terminal
Use this command to interrupt the currently running program and regain control of the terminal. This
is useful if running the code is taking longer than expected, such as if the code has an incorrectly
coded never-ending loop.
In this example the code has an infinite loop. The code stops the code execution.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the code you want to paste. This example uses the following code:

while True:
pass # This statement means "do nothing"

3. At the MicroPython >>> prompt, type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and the select the Paste option. The code appears
in the terminal and each line is numbered, followed by ===. For example line 1 starts with
1===.

5. Press Ctrl+D to accept and run the pasted code. The code will run continuously until you
cancel it.

6. Press Ctrl+C to stop the code execution. A KeyboardInterrupt exception message prints to the
screen.

7. A MicroPython >>> prompt displays on a new line.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with
EFX32
Type "help()" for more information.
>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish

1=== while True:
2=== pass # This statement means "do nothing"

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

KeyboardInterrupt:
>>>

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

REPL (Read-Evaluate-Print Loop) examples Ctrl+D: Reboot the MicroPython REPL

Digi MicroPython Programming Guide 54

Ctrl+D: Reboot the MicroPython REPL
Use this command to reboot the REPL and clear any variable and function definitions.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type a = "test", then press Enter. This statement assigns the

value "test" to the variable "a".
3. At the MicroPython >>> prompt, type a, then press Enter. The value assigned to the variable

displays.
4. Press Ctrl+D to reboot the REPL. The phrase "soft reboot" followed by the MicroPython banner

prints.
5. At the MicroPython >>> prompt, type the variable "a" (no quotes) and press Enter. Since the

memory was wiped, the variable is not found and the error NameError: name not defined
prints in the output.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> a = 'test'
>>> a
'test'
>>>
soft reboot

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> a
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name not defined

Ctrl+E: Enter paste mode
Use this REPL command to enter paste mode. This enables you to paste a block of code into the
terminal, rather than having to type in lines of code.

Note Paste mode evaluates each line in the pasted code block in order, as if the code had been typed
into the REPL.

Paste one line of code
This example uses the following code to show how to copy one line of code and paste it into the
MicroPython Terminal.

1. Access the MicroPython environment.
2. Copy the code you want to paste. This example uses the following code:

print("Hello world")

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

REPL (Read-Evaluate-Print Loop) examples Ctrl+F: Upload code to flash

Digi MicroPython Programming Guide 55

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish

1===

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. The code appears in the terminal and each line is numbered, followed by ===. For example line

1 starts with 1===.
6. Press Ctrl+D to complete the paste process and run the pasted code.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish

1=== print("Hello world")
Hello world

Paste a code segment
This example uses the following code to show how to copy one line of code and paste it into the
MicroPython Terminal.

1. Access the MicroPython environment.
2. Copy the code you want to paste. This example uses the following code:

for x in range(10):
print("Current number: %d" % x)
if (x < 9):

print("Next number will be: %d\n" % (x + 1))
else:

print("This is the last number!")

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. The code appears in the terminal and each line is numbered, followed by ===. For example line

1 starts with 1===.
6. Press Ctrl+D to complete the paste process and run the pasted code. In this example, you

should see 10 statements print to the terminal that state the current number, and what the
next number will be. The numbers are from 0 to 9.

Ctrl+F: Upload code to flash
You can use flash mode to paste a block of code into MicroPython and store it to flash memory. You
can run the stored code at any time from the MicroPython prompt by pressing Ctrl+R.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

REPL (Read-Evaluate-Print Loop) examples Ctrl+F: Upload code to flash

Digi MicroPython Programming Guide 56

When the code is uploaded to the flash memory, the MicroPython volatile memory (RAM) is cleared of
any previously executed code. The uploaded code is saved on the XBee device. This means that only
the last code saved to the flash memory is available.
You can choose to automatically run the code currently stored in the flash memory when the XBee
device boots up.

Load code to flash memory
Use this command to upload code to the flash compile mode.
Any code uploaded in the flash memory can be set to run automatically when the XBee Cellular
Modem boots up. You can also press Ctrl+R to re-run the compiled code at any time.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the code you want to paste into the XBee device. For example:

print("Hello world")

3. Press Ctrl+F.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
flash compile mode; Ctrl-C to cancel, Ctrl-D to finish

1^^^

4. At the MicroPython 1^^^ prompt, right-click and select the Paste option.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
flash compile mode; Ctrl-C to cancel, Ctrl-D to finish

1^^^ print("Hello world")

5. Press Ctrl+D to finish. The code is compiled and stored in flash memory.

Compiling 123 bytes of code...
Used 0/150 QSTR entries.
Compiled 123 bytes of code to 188/7544 bytes of flash.
Automatically run this code at startup [Y/n]?

Note The compilation report includes the number of used/available QSTR entries. The QSTR pool is
used to store string literals from uploaded code. If a piece of code contains too many string literals,
compilation fails and reports a QSTR pool overflow.

6. You can choose whether to have the code stored in the flash memory automatically run the
next time the XBee device is started. Press Enter to leave the setting unchanged (the default
value shown as uppercase).

o Y: Press Y to automatically run the code stored in flash memory upon startup. This sets
the PS command to 1. Note that this example only works on startup if you have a

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

REPL (Read-Evaluate-Print Loop) examples Flash memory and automatic code execution

Digi MicroPython Programming Guide 57

terminal open on that serial port and the AP command is set to 4.
o N: Press N to ensure that the code stored in flash memory is not run the next time the

XBee device is started. This sets the PS command to 0.

Erase the code stored in flash memory
You can erase the code stored in flash memory using one of the following methods.

Note This example assumes you have code stored to flash memory. For information about how to
store code to flash memory, see Load code to flash memory.

Ctrl+D

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, press Ctrl+F to enter flash mode. Do not enter or paste any

code.
3. At the MicroPython >>> prompt, press Ctrl+D to complete the process. A process message

displays:

Erasing stored code...

4. When the process is complete the MicroPython >>> prompt displays in the terminal.

ATPYD command
The ATPYD command erases stored code and performs a soft reboot. For instructions, see the
MicroPython commands section in the appropriate user guide.

Flash memory and automatic code execution
Flash memory is referred to as "non-volatile" memory, as it retains whatever is stored in it, even
without any power. This allows code stored in the flash memory to be run when you start up the XBee
device.
The sections below explain how to manage code stored in flash memory.

n Run stored code at start-up to flash LEDs (XBee Cellular Modem only)
n Disable code from running at start up
n Enable code to run at start-up

Run stored code at start-up to flash LEDs

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

If you have stored code to the flash memory, you can choose to automatically run this code when the
XBee device boots up.

1. Access the MicroPython environment.
2. Copy the code you want to paste. This example uses the following code, which automatically

blinks the LED lights on the XBIB board every two seconds.

https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm

REPL (Read-Evaluate-Print Loop) examples Flash memory and automatic code execution

Digi MicroPython Programming Guide 58

from machine import Pin
import time

dio10 = Pin("P0", Pin.OUT, value=0)
while True:

time.sleep(1)
dio10.toggle() # Flash the LED on DIO10 (P0)

3. At the MicroPython >>> prompt, press Crtl+F.
4. At the MicroPython 1^^^ prompt, right-click and select the Paste option.
5. The code appears in the terminal and each line is numbered, followed by ^^^. For example,

line 1 starts with 1^^^.
6. Press Ctrl+D to finish.

Compiling 123 bytes of code...
Used 0/150 QSTR entries.
Compiled 123 bytes of code to 188/7544 bytes of flash.
Automatically run this code at startup [Y/n]?

7. Press the Y key to run the code at start-up.
8. You may want to test your code before power cycling the device.
9. Press Ctrl+R to run the code compiled in flash. If it is not working correctly, press Ctrl+C to

interrupt it and upload a new version.
10. Once you are happy with the uploaded code, power down the XBee Cellular Modem.

a. Unplug the USB cable from your computer.
b. Disconnect the power supply from the XBIB board.
c. Wait until the lights on the XBIB board turn off.
d. Reconnect the power. The three LEDs on the XBIB board automatically start turning ON

and OFF every 2 seconds.
11. Connect the USB cable to your computer.
12. Access the MicroPython environment. A MicroPython prompt does not display, as MicroPython

is running the code to blink the LEDs.
13. The terminal seems unresponsive as the code loop executes. Note the three green LEDs to the

right of the USB-B port on the XBIB development board. These LEDs turn ON then OFF every 2
seconds.

14. At the terminal, press Ctrl+C to stop code execution and regain control of the terminal. A
MicroPython prompt displays and the LEDs stop flashing.

Disable code from running at start up
For code that you saved to the flash memory and specified that the code should run at start up, you
can change your choice and choose not to automatically run the code at start up. You can change
your choice without saving the code to the flash memory again.

1. Use Ctrl+F to save code to the flash memory and choose to run it at start up.
2. At the Serial Console, enter Command mode by sending +++ and receiving an OK response.

REPL (Read-Evaluate-Print Loop) examples Flash memory and automatic code execution

Digi MicroPython Programming Guide 59

3. At the prompt, type ATPS and press Enter. The terminal should echo back 1, since the code in
the flash memory is set to run at start up.

4. At the prompt, type ATPS0 and press Enter. This statement disables automatic code execution
at start up.

5. At the prompt, type ATWR and press Enter. This statement writes the change to the flash
memory.

6. At the prompt, type ATCN and press Enter. This statement exits Command mode.
7. Disconnect the USB cable from your computer.
8. Close the Serial Console.
9. Disconnect the power from the XBIB board.

10. After the LEDs on the XBIB board have all turned off, reconnect the power to the XBIB board.
11. Connect the USB cable to your computer. Notice that the LEDs do not blink, which verifies that

you have successfully disabled the automatic code execution at start up.

Ctrl+R: Run code in flash
You can use this command to re-run the code in the flash memory.

1. Access the MicroPython environment.
2. Load code to flash memory.
3. Press Ctrl+R to re-run the code in the flash memory.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
Running 76 bytes of stored bytecode...
Hello world

Enable code to run at start-up
For code that you saved to the flash memory and chosen not to run at start up, you can change your
choice and enable the code to automatically run at start up. You can change your choice without
saving the code to the flash memory again.

1. For this example, you need code stored in flash memory that will not automatically run at
start-up. Use Ctrl+F to save code to the flash memory. You can either:

n Press N and choose not to run it at start up.
n Press Y to run the code in flash memory at start-up. If you chose Yes, for this example

you should Disable code from running at start up.

Remember that in this example, when MicroPython is not set to automatically run at start-up,
the LEDs do not blink on module start-up.

2. At the Serial Console, enter Command mode by sending +++ and receiving an OK response.

3. At the prompt, type ATPS and press Enter. The terminal should echo back 0, since the code in
the flash memory is not set to run at start-up.

4. At the prompt, type ATPS1 and press Enter. This statement enables automatic code execution
at start up.

REPL (Read-Evaluate-Print Loop) examples Perform a soft-reset or reboot

Digi MicroPython Programming Guide 60

5. At the prompt, type ATWR and press Enter. This statement writes the change from the
previous statement to the flash memory.

6. At the prompt, type ATCN and press Enter. This statement exits command mode.
7. Press the Reset button on the XBIB board.
8. Notice that the LEDs blink ON and OFF, which verifies that you have successfully enabled the

automatic code execution at start up.

Perform a soft-reset or reboot
If you want to soft-reset the REPL you can press Ctrl+D in the REPL, or run machine.soft_reset() to
force a soft reset from code.
If you want to reboot the entire XBee device, run xbee.atcmd('FR').

Access file system in MicroPython

Note This section only applies to devices that support the File System feature.

Directory and file names follow the rules in Paths.

Modify file system contents 62
Access data in files 64
File object methods 64
Import modules from file system 65
Reload a module 66
Compiled MicroPython files 66

Digi MicroPython Programming Guide 61

https://www.digi.com/resources/documentation/Digidocs/90001525/Default.htm#Reference/r_paths.htm

Access file system in MicroPython Modify file system contents

Digi MicroPython Programming Guide 62

Modify file system contents
The uos module contains the following methods to interact with the file system.

uos.chdir(dir)
Change the current working directory.

uos.getcwd()
Get the current working directory.

Note MicroPython maintains a separate working directory from the FS (File System) command
processor.

uos.ilistdir([dir])
This function returns an iterator which then yields tuples corresponding to the entries in the directory
that it is listing. With no argument it lists the current directory, otherwise it lists the directory given by
dir. The tuples have the form (name, type, inode, size):

n name: A string (or bytes if dir is a bytes object) and it is the name of the entry.
n type: An integer that specifies the type of the entry, with 0x4000 for directories and 0x8000 for

regular files.
n inode: An integer corresponding to the inode of the file. On XBee devices, set to 0 for regular

files and directories and -1 for secure files.
n size: An integer representing the size of the file or -1 if unknown. Its meaning is currently

undefined for directory entries.

uos.listdir([dir])
Returns a list of files in the given directory. With no argument it uses the current working directory (.).

uos.mkdir(dir)
Create a new directory.

uos.remove(file)
Remove a file.

uos.rmdir(dir)
Remove a directory. Fails if dir is not empty.

uos.rename(old_path, new_path)
Rename or move a file or directory. Fails if new_path already exists.

Note This function is only available on modules that support renaming files.

Access file system in MicroPython Modify file system contents

Digi MicroPython Programming Guide 63

uos.replace(old_path, new_path)
Replace a file or directory (new_path) with another (old_path).

Note This function is only available on modules that support renaming files.

uos.sync()
Sync all file systems.

uos.compile(source_file, mpy_file=None)
This is an XBee extension to uos. Compile Python source code in source_file and store in a file with
an .mpy extension. Default is to remove the .py extension from source_file and append .mpy to
generate mpy_file. See Import modules from file system for details on using .mpy files.
Compilation involves three steps: parsing, compiling and saving to the file system. MicroPython prints
information about heap usage before each step so you can monitor heap requirements for a device,
and consider splitting it into two (or more) modules or compiling with the MicroPython cross compiler
(mpy-cross) on your computer instead of compiling on the XBee device.

>>> uos.compile('urequests.py')
stack: 644 out of 3584
GC: total: 32000, used: 688, free: 31312
No. of 1-blocks: 12, 2-blocks: 7, max blk sz: 8, max free sz: 1716
Parsing urequests.py...
stack: 644 out of 3584
GC: total: 32000, used: 8000, free: 24000
No. of 1-blocks: 20, 2-blocks: 12, max blk sz: 88, max free sz: 1415
Compiling...
stack: 644 out of 3584
GC: total: 32000, used: 3872, free: 28128
No. of 1-blocks: 45, 2-blocks: 35, max blk sz: 42, max free sz: 1254
Saving urequests.mpy...
>>> list(uos.ilistdir())
[('urequests.py', 32768, 0, 3407), ('urequests.mpy', 32768, 0, 2657)]

uos.format()
This is an XBee extension to uos. Reformats the SPI flash and creates the default directory structure.

uos.hash([secure_file])
This is an XBee extension to uos. Returns a 32-byte bytes object with the sha256 hash digest of a
secure file. You can use this value to verify that a secure file matches an unencrypted copy of the file.
See FS HASH filename for more information on using this digest. If secure_file is not specified, it
returns a string identifying the hash method (sha256). You can convert the 32-byte digest to a 64-
character hexdigest with the following code snippet:

>>> from ubinascii import hexlify
>>> digest = os.hash('cert/client.key')
>>> hexdigest = hexlify(digest)
>>> digest

https://www.digi.com/resources/documentation/Digidocs/90002258/#reference/r_cmd_FS_HASH.htm

Access file system in MicroPython Access data in files

Digi MicroPython Programming Guide 64

b'\r\x85\xdbY\x0b\xfd\r\x00\x1aI\x08\xb8\x19\xd3\xb8\xa0\x03f\x85\x0fh\xb9
\xc9\x1f\x92;\xd8\xab\xa2\x0f\xfb\x16'
>>> hexdigest
'0d85db590bfd0d001a4908b819d3b8a00366850f68b9c91f923bd8aba20ffb16'

Access data in files
The built-in method open() is an alias to uio.open(file, mode='r') which returns a file object—an
uio.FileIO object for binary modes and an uio.TextIOWrapper object for text modes. If the file cannot
be opened, an OSError is raised.
Parameter file is a path-like object giving the path—absolute or relative to the current working
directory—of the file to be opened.
Parameter mode is an optional string that specifies the mode in which the file is opened. It defaults to
'r' which means open for reading in text mode. Other common values are 'w' for writing (truncating
the file if it already exists), 'x' for exclusive creation and 'a' for appending—all writes append to the
end of the file regardless of the current seek position. The available modes are:

Character Meaning

'r' Open for reading (default).

'w' Open for writing, truncating file file. On modules that do not support editing files
after creation, this will fail if the file already exists.

'x' Open for exclusive creation, failing if the file already exists.

'a' Open for writing, always appending to the end of the file. Only available on modules
that support editing files after creation.

'b' Binary mode.

't' Text mode (default).

'+' Open a disk file for updating (reading and writing). Only available on modules that
support editing files after creation.

'*' (XBee extension) open a secure file for writing. Only available on modules that
support secure files.

The default mode is 'r'—open for reading text, a synonym of 'rt'. For binary read-write access, the
mode 'w+b' opens and truncates the file to 0 bytes. 'r+b' opens the file without truncation.
Python distinguishes between binary and text I/O. Files opened in binary mode—including 'b' in the
mode argument—return contents as bytes objects without any decoding. In text mode—the default, or
when 't' is included in the mode argument—the contents of the file are returned as str.

File object methods
The following methods interact with file objects.

read(size=-1)
Read up to size bytes from the object and return them. As a convenience, if size is unspecified or -1,
all bytes until end-of-file (EOF) are returned.

Access file system in MicroPython Import modules from file system

Digi MicroPython Programming Guide 65

readinto(b)
Read bytes into a pre-allocated, writable bytes-like object b, and return the number of bytes read.

readline(size=-1)
Read and return one line from the stream. If size is specified, at most size bytes are read.

readlines()
Read and return a list of lines from the stream. MicroPython does not support Python3's hint
parameter.

Note It is already possible to iterate on file objects using for line in file: ... without calling
file.readlines().

write(b)
Write the given bytes-like object, b, to the underlying raw stream, and return the number of bytes
written.

seek(offset, whence=0)

Note Seeking is disabled when writing to secure files.

Change the stream position to the given byte offset. offset is interpreted relative to the position
indicated by whence. The default value for whence is 0 (SEEK_SET). Values for whence are:

n 0 (SEEK_SET) – start of the stream (the default); offset should be zero or positive
n 1 (SEEK_CUR) – current stream position; offset may be negative
n 2 (SEEK_END) – end of the stream; offset is usually negative

Returns the new absolute stream position.

tell()
Return the current stream position.

flush()
Flush the write buffers of the stream if applicable. This does nothing for read-only streams.

close()
Flush and close the stream. This does nothing if the file is already closed.

Import modules from file system
Python code can access code in modules using the builtin import command. When executing the line
import foo, MicroPython goes through each entry in sys.path looking for a module called foo. It first
checks for a package by looking for the file __init__.py in the directory foo. It then checks for a file
foo.py and finally foo.mpy (a pre-compiled Python file) before moving to the next entry in sys.path.

Access file system in MicroPython Reload a module

Digi MicroPython Programming Guide 66

On startup, the XBee device sets its sys.path to a default of ['', '/flash', '/flash/lib'].

Reload a module
If you want to reload a module after uploading a revised source file, use the following method to
discard the old module and re-import from the updated file.

Note This is also necessary if the previous import attempt failed due to a syntax error.

import sys
def reload(mod):

mod_name = mod.__name__
del sys.modules[mod_name]
return __import__(mod_name)

Compiled MicroPython files
With the file system, the XBee device supports compiled MicroPython code in the form of .mpy files.
You can convert a .py file to a .mpy file on the XBee device using the uos.compile() method; see
Modify file system contents. The XBee device also supports .mpy files created with mpy-cross, the
MicroPython cross-compiler. You can download mpy-cross for Windows, Linux and MacOS from the
mpy-cross project.

Note You should pass -mno-unicode and -msmall-int-bits=31 to mpy-cross when cross-compiling
for the XBee device.

The benefit of using a .mpy file is that MicroPython can load it to the heap with minimal overhead,
unlike the parsing and compiling process which could require a 32 kB heap to create a 7 kB .mpy file.
Since MicroPython checks for .py files in a given directory before .mpy files, you need to organize your
files so the .mpy comes up first during an import search. One technique is to keep the Python source
in lib/source/ and then compile to an .mpy file in lib/ after uploading new files; for example, with
/flash/lib as the current working directory, uos.compile('source/foo.py', 'foo.mpy').

https://pypi.org/project/mpy-cross/

Send and receive User Data Relay frames

Note This section applies to the XBee Cellular Modem and the XBee 3 Zigbee RF Module. See Which
features apply to my device? for a list of the supported features.

You can send and receive User Data Relay Frames from MicroPython using the relay module from the
xbee module. Import the module with the statement: from xbee import relay

Constants 68
Methods 68
Examples 69

Digi MicroPython Programming Guide 67

Send and receive User Data Relay frames Constants

Digi MicroPython Programming Guide 68

Constants

Interfaces (always defined)
relay.SERIAL: 0

relay.BLUETOOTH: 1

relay.MICROPYTHON: 2

Limits
relay.MAX_DATA_LENGTH: maximum length of data passed to relay.send()

Methods

relay.receive()
Returns None if a frame is not available, otherwise a dictionary with entries for the sender (one of the
interfaces, for example, relay.SERIAL), and message (a bytes object).

relay.send(dest, data)
Pass one of relay.SERIAL, relay.BLUETOOTH or relay.MICROPYTHON (for loopback) as dest. Can use
sender from the dictionary returned from receive() as dest parameter. The data parameter should be
a bytes or string object, or any other object that implements the buffer protocol. You can send a
maximum of relay.MAX_DATA_LENGTH bytes in a single frame.

Exceptions
The send() method throws exceptions in at least the following cases:

n ValueError or TypeError for invalid parameters.
n OSError(ENOBUFS) if unable to allocate a buffer for the frame.
n OSError(ENODEV) for invalid dest parameter.
n OSError(ECONNREFUSED) when destination is not accepting frames (for example, the serial

interface is not in API mode, Bluetooth is not connected and unlocked, the queue is full or
delivery failed).

relay.callback(my_callback)

Note This section only applies to the XBee 3 Cellular Modem firmware x15 or later. See Which features
apply to my device? for a list of the supported features.

Register a callback that will be called whenever a user data relay frame is received.
The callback function must take one parameter:

Send and receive User Data Relay frames Examples

Digi MicroPython Programming Guide 69

n A dictionary with the following keys:
l message: The received data in bytearray format.
l sender: The source interface.

Note When a callback is registered, using relay.callback() will raise an error as only one method of
relay frame delivery is supported at a time.

Examples
Digi has provided example applications which demonstrate how to use User Data Relay frames from
MicroPython.
You can read these examples on GitHub: https://github.com/digidotcom/xbee-
micropython/tree/master/samples/xbee/communication
If you use the Digi XBee MicroPython PyCharm Plugin you can load the examples using File> Import
XBee MicroPython Sample Project... in the XBEE / COMMUNICATION folder.

https://github.com/digidotcom/xbee-micropython/tree/master/samples/xbee/communication
https://github.com/digidotcom/xbee-micropython/tree/master/samples/xbee/communication
https://www.digi.com/products/embedded-systems/digi-xbee/digi-xbee-tools/digi-xbee-pycharm-ide-plug-in

MicroPython libraries on GitHub

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

On GitHub, we maintain modules and sample code for use on XBee devices with MicroPython. The
code is available at github.com/digidotcom/xbee-micropython. The samples include:

n Secure Sockets Layer (SSL) and Transport Layer Security (TLS). See The ussl module.
n Amazon Web Services (AWS). These samples demonstrate how to connect to AWS IoT and

publish and subscribe to topics using the umqtt.simple module. See Use AWS IoT from
MicroPython.

n File Transfer Protocol (FTP). Micro File Transfer Protocol client.
n MQ Telemetry Transport (MQTT). MQTT client for publish/subscribe. See Publish to a topic.
n Digi Remote Manager. An HTTP client for Digi Remote Manager.

Digi MicroPython Programming Guide 70

https://github.com/digidotcom/xbee-micropython

MicroPython modules

You can use many MicroPython modules with the XBee device. You can obtain a list of the available
modules and of the module properties from the REPL. For more information see Discover available
modules.

XBee-specific functions 72
Standard modules and functions 72
Discover available modules 73

Digi MicroPython Programming Guide 71

MicroPython modules XBee-specific functions

Digi MicroPython Programming Guide 72

XBee-specific functions
The following functions are specifically for use with the XBee device.

n Machine module
n Cellular network configuration module
n XBee module
n digi.cloud module

Standard modules and functions
The table below describes the MicroPython modules that you can use with the XBee device. For some
functions and classes, you can only use a subset of the functions and classes with the XBee device.
The table specifies those that you can use.
For a complete description of the MicroPython libraries and the related functions, see MicroPython
libraries.

Note The MicroPython modules starting with "u" have aliases to the standard Python module names.

Function Description

MicroPython
functions

Functions used to access and control MicroPython internals.

Note The standard set of MicroPython functions work with the XBee device.

Builtin
Functions

Basic functions built in to MicroPython.

gc Functions that control the garbage collector.

sys System-specific functions.

n sys.print_exception(exc, file=sys.stdout)

Available constants:

n sys.argv
n sys.byteorder
n sys.implementation
n sys.maxsize
n sys.modules
n sys.path
n sys.platform
n sys.version
n sys.version_info

ubinascii This module implements conversions between binary data and various encodings
of it in ASCII form (in both directions).

ucryptolib This module provides an Advanced Encryption Standard (AES) API in MicroPython

http://docs.micropython.org/en/latest/pyboard/library/index.html#python-standard-libraries-and-micro-libraries
http://docs.micropython.org/en/latest/pyboard/library/index.html#python-standard-libraries-and-micro-libraries
http://docs.micropython.org/en/latest/pyboard/library/micropython.html
http://docs.micropython.org/en/latest/pyboard/library/micropython.html
http://docs.micropython.org/en/latest/pyboard/library/builtins.html
http://docs.micropython.org/en/latest/pyboard/library/builtins.html
http://docs.micropython.org/en/latest/pyboard/library/gc.html
http://docs.micropython.org/en/latest/pyboard/library/sys.html
http://docs.micropython.org/en/latest/pyboard/library/ubinascii.html
https://docs.micropython.org/en/latest/library/ucryptolib.html

MicroPython modules Discover available modules

Digi MicroPython Programming Guide 73

Function Description

to perform encryption and decryption of data or files.

uhashlib This module implements binary data hashing algorithms.

uio This module contains additional types of stream (file-like) objects and helper
functions.

ujson This module performs JSON encoding and decoding.

uselect This module provides functions to efficiently wait for events on multiple streams
(select streams which are ready for operations)
This is currently only available on the XBee Cellular Modem with firmware x15 and
later as it primarily applies to sockets.

usocket (XBee Cellular Modem only) This module provides access to the BSD socket
interface.
See Sockets for samples of using sockets with the XBee Cellular Modem.

ustruct This module provides functions to pack and unpack primitive data types.

utime XBee Cellular Modem: This module provides functions for getting the current time
and date, measuring time intervals, and for delays.
XBee 3 Zigbee RF Module: This module provides functions for measuring time
intervals, and for delays.

Discover available modules
You can obtain a list of the available modules and of the module properties from the REPL.

Note The MicroPython modules starting with "u" have aliases to the standard Python module names.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type help('modules') and press Enter. A list of available

modules displays.
3. You can display a list of a module's properties and methods. In these steps, (modulename) in

the command should be replaced by the module you are interested in.
a. At the MicroPython >>> prompt, type import modulename, and press Enter.
b. At the MicroPython >>> prompt, type help(modulename) and press Enter. A list of the

module's properties and methods displays.

http://docs.micropython.org/en/latest/pyboard/library/uhashlib.html
http://docs.micropython.org/en/latest/pyboard/library/uio.html
http://docs.micropython.org/en/latest/pyboard/library/ujson.html
https://docs.micropython.org/en/latest/library/uselect.html
http://docs.micropython.org/en/latest/pyboard/library/usocket.html
http://docs.micropython.org/en/latest/pyboard/library/ustruct.html
http://docs.micropython.org/en/latest/pyboard/library/utime.html

Machine module

The machine module contains specific functions related to the XBee device.
For a detailed description of the MicroPython machine functions, see the machine function section in
the standard MicroPython documentation.

Reset-cause 75
Random numbers 75
Unique identifier 75
Class PWM (pulse width modulation) 75
Class ADC: analog to digital conversion 76
Class I2C: two-wire serial protocol 78
Class Pin 83
Class UART 83
Class WDT: watchdog timer 86
Access the XBee device's I/O pins 86
Use the Pin() constructor 88
Use mode() to configure a pin 89
Use pull() to configure an internal pull up/down resistor 90

Digi MicroPython Programming Guide 74

http://docs.micropython.org/en/latest/pyboard/library/machine.html

Machine module Reset-cause

Digi MicroPython Programming Guide 75

Reset-cause
This function returns the cause of a reset. See Reset-cause for possible return values.

machine.reset_cause()

Constants
These return values describe the cause of a reset.

machine.BROWNOUT_RESET

machine.LOCKUP_RESET

machine.PWRON_RESET

machine.HARD_RESET

machine.WDT_RESET

machine.DEEPSLEEP_RESET

machine.SOFT_RESET

Note Some devices do not support reporting all of these reset causes. To see a list of possible values,
run:

import machine
help(machine)

Random numbers
The machine.rng() method returns a 30-bit random number that is generated by the software.
The uos.urandom(n) method returns a bytes object with n random bytes generated by the hardware
random number generator.

Unique identifier
The machine.unique_id() function returns a 64-bit bytes object with a unique identifier for the
processor on the XBee Cellular Modem.
In some MicroPython ports, the ID corresponds to the network MAC address.

Class PWM (pulse width modulation)
Note This section only applies to devices that support the Pin I/O feature.

This class is not supported on the XBee Cellular Modem.
You use this function to enable PWM on XBee devices using pin P0.
The duty cycle is between 0 and 1023, inclusive of the end points. PWM cannot read or write the
frequency.

Machine module Class ADC: analog to digital conversion

Digi MicroPython Programming Guide 76

This function uses the machine.PWM class. For information about the MicroPython machine module,
see machine — functions related to the hardware.
For XBee devices that support PWM1, change the instances of P0 to P1 in the example program.

from machine import Pin, PWM

pwm0 = PWM(Pin('P0')) # create PWM object from a pin
pwm0.duty() # get current duty cycle
pwm0.duty(200) # set duty cycle
pwm0.deinit() # turn off PWM on the pin

pwm0 = PWM('P0', duty=512) # create and configure in one go

The following REPL session makes use of the PWM class:

>>> from machine import PWM
>>> pwm0 = PWM('P0')
>>> pwm0.freq() # report the frequency (23.46kHz)
23460
>>> pwm0.freq(10000) # can't change fixed frequency on XBee
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NotImplementedError: can't set PWM frequency
>>> pwm0.duty() # report the duty cycle
0
>>> pwm0.duty(255) # set 25% duty cycle
>>> pwm0.duty(511) # set 50% duty cycle
>>> pwm0.duty(767) # set 75% duty cycle
>>> pwm0.duty(1023) # set 100% duty cycle
>>> pwm0.duty() # report the duty cycle
1023
>>> pwm0.deinit() # disable DIO10

Note Supported on XBee 3 cellular only. Not supported on XBee Cellular Cat 1 Verizon and XBee
Cellular 3G.

Class ADC: analog to digital conversion
Note This section only applies to devices that support the Pin I/O feature.

Use this class to read analog values on a pin.

import machine

apin = machine.ADC('D0') # create an analog pin on D0
val = apin.read() # read an analog value
print(val) # display analog value

Constructors
You can create an ADC object associated with the assigned pin. You can then read analog values on
that pin.

class machine.ADC('D0')

http://docs.micropython.org/en/latest/pyboard/library/machine.html

Machine module Class ADC: analog to digital conversion

Digi MicroPython Programming Guide 77

Note For the XBee Cellular Modem the ADC analog reference is 2.5 V and the pin input range is 0 - 2.5
V. The ADC reference voltage and input range for XBee 3 Zigbee, DigiMesh and 802.15.4 are based on
the AV value which can be 0 = 1.25 V, 1 = 2.5 V or 2 = VDD.

Note The ADC reading value has a resolution of 12 bits with a range of 0 - 4095.

Methods
Read the analog value
This function allows you to read the ADC value.

apin.read()

Note apin.read() returns a raw ADC sample. Use the following equation to convert this value to mV:

sample mV = (A/D reading * Vref mV) / 4095
Read the analog value as a 16-bit number
This function allows you to read the ADC value and get the result as a 16-bit number—0 to 65535. This
function is provided for compatibility with other MicroPython implementations.
XBee devices only support 12-bit ADC readings. Readings from read_u16() will match those from read
(), scaled to a 16-bit range.

apin.read_u16()

Note apin.read_u16() returns a raw ADC sample. Use the following equation to convert this value to
mV:

sample mV = (A/D reading * Vref mV) / 65535

Note This function is available on XBee Cellular and XBee 3 Cellular products with firmware ending in
*16 or newer, and XBee 3 DigiMesh, 802.15.4 and Zigbee devices with firmware ending in *0B or
newer.

Sample program
The following sample program applies to the XBee 3 Zigbee, DigiMesh, and 802.15.4.

import machine
import xbee

x = xbee.XBee()

print('Setting the analog reference to 1 (2500 mV)')
x.atcmd('AV', 1)
print('Analog reference set to %d' % x.atcmd('AV'))

Take an analog measurement
apin = machine.ADC('D0')
raw_val = apin.read()
val_mv = (raw_val * 2500)/4095

Machine module Class I2C: two-wire serial protocol

Digi MicroPython Programming Guide 78

print('Measured %d mV' % val_mv)

Class I2C: two-wire serial protocol
Note This section only applies to devices that support the I2C feature.

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of two
wires: SCL and SDA, the clock and data lines respectively.
When created, I2C objects are associated with a specific two wire bus. They can be initialized when
created, or initialized later on.
Printing the I2C object gives you information about its configuration.
The XBee device can function as an I2C master controlled by MicroPython. This allows you to perform
basic sensing and actuation with I2C devices such as sensors and actuators via MicroPython without
an additional microcontroller.
The MicroPython API is the same as documented in the MicroPython library reference except that the
XBee device does not support primitive operations or the deinit operation.
The I2C implementation is provided through hardware, so when you use machine.I2C to initialize I2C,
use the id parameter to select the interface. The only valid value is 1, which uses DIO1 for SCL and
DIO11 for SDA. Using the scl and sda parameters to select pins is not valid on the XBee device.

Note You are not required to configure the XBee I/O using AT commands prior to creating an I2C
object. The appropriate I/O configuration will be performed automatically.

The following table shows the pin layout associated with the example below.

Pin AT command SMT pin MMT pin TH pin

I2C SCL (DIO1) D1 32 30 19

I2C SDA (DIO11) P1 8 8 7

An example of using I2C follows:

from machine import I2C

i2c = I2C(1, freq=400000) # create I2C peripheral at frequency of
400kHz

i2c.scan() # scan for slaves, returning a list of 7-
bit addresses

i2c.writeto(42, b'123') # write 3 bytes to slave with 7-bit
address 42
i2c.readfrom(42, 4) # read 4 bytes from slave with 7-bit
address 42

i2c.readfrom_mem(42, 8, 3) # read 3 bytes from memory of slave 42,
starting at memory-address 8 in the

slave
i2c.writeto_mem(42, 2, b'\x10') # write 1 byte to memory of slave 42

starting at address 2 in the slave

http://docs.micropython.org/en/latest/pyboard/library/machine.I2C.html

Machine module Class I2C: two-wire serial protocol

Digi MicroPython Programming Guide 79

Constructors
class machine.I2C(id, *, freq=400000)
Construct and return a new I2C object using the following parameters:

n id identifies a particular I2C peripheral. This version of MicroPython supports a single
peripheral with id 1 using DIO1 for SCL and DIO11 for SDA.

n freq should be an integer that sets the maximum frequency for SCL.

General methods
I2C.scan()
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of addresses of slave devices
that respond. A device responds if it pulls the SDA line low after its address (including a write bit) is
sent on the bus.

Standard bus operations methods
The following methods implement the standard I2C master read and write operations that target a
given slave device.
I2C.readfrom(addr, nbytes, stop=True)
Read nbytes from the slave specified by addr. If stop is true then a STOP condition is generated at
the end of the transfer. Returns a bytes object with the data read.
I2C.readfrom_into(addr, buf, stop=True)
Read into buf from the slave specified by addr. The number of bytes read will be the length of buf. If
stop is true then a STOP condition is generated at the end of the transfer.
The method returns None.
I2C.writeto(addr, buf, stop=True)
Write the bytes from buf to the slave specified by addr. If a NACK is received following the write of a
byte from buf then the remaining bytes are not sent. If stop is true then a STOP condition is
generated at the end of the transfer, even if a NACK is received. The function returns the number of
ACKs that were received.

Note buf should be a bytearray type object.

Memory operations methods
Some I2C devices act as a memory device (or set of registers) that can be read from and written to. In
this case there are two addresses associated with an I2C transaction: the slave address and the
memory address. The following methods are convenience functions to communicate with such
devices.
I2C.readfrom_mem(addr, memaddr, nbytes, *, addrsize=8)
Read nbytes from the slave specified by addr starting from the memory address specified by
memaddr. The argument addrsize specifies the address size in bits. Returns a bytes object with the
data read.
I2C.readfrom_mem_into(addr, memaddr, buf, *, addrsize=8)
Read into buf from the slave specified by addr starting from the memory address specified by
memaddr. The number of bytes read is the length of buf. The argument addrsize specifies the
address size in bits.

Machine module Class I2C: two-wire serial protocol

Digi MicroPython Programming Guide 80

The method returns None.
I2C.writeto_mem(addr, memaddr, buf, *, addrsize=8)
Write buf to the slave specified by addr starting from the memory address specified by memaddr. The
argument addrsize specifies the address size in bits.
The method returns None.

Note buf should be a bytearray type object.

Sample programs
The following sample program applies to the HDC1080 I2C temperature and humidity sensor. This
sensor is available on the XBIB-CU-TH, XBIB-C-MMT, and XBIB-C-SMT XBee development boards.

Note Refer to the HDC1080 datasheet available at ti.com for detailed technical information.

Make the following connections for this example:

XBee pin Description HDC1080 pin

DIO1 SCL 6

DIO11 SDA 1

VCC VCC 5

GND ND 2

Simple HDC1080 I2C Example
from micropython import const
from machine import I2C
from time import sleep

Device register values.
TEMP_REG = const(0x00) # Temperature register
HUMI_REG = const(0x01) # Humidity register
CONF_REG = const(0x02) # Configuration register

class HDC1080:
def __init__(self, i2c, slave_addr=64):

""" Initialize a HDC1080 temperature and humidity sensor.
Keyword arguments:
i2c -- The i2c object used to interact with the I2C sensor.
slave_addr -- The slave address of the sensor (default 64 or

0x40).
"""
self.i2c = i2c
scan_result = self.i2c.scan()
assert slave_addr in scan_result, \

"Did not find slave %d in scan: %s" % (slave_addr, scan_
result)

self.addr = slave_addr
Sleep for 15 ms to allow the temperature and humidity
sensors to start recording.
sleep(0.015)
Set temperature and humidity readings for independent

http://www.ti.com/

Machine module Class I2C: two-wire serial protocol

Digi MicroPython Programming Guide 81

operation, 14 bit resolution.
setup_data = 0b00000000
data = bytearray(3)
data[0] = CONF_REG
data[1] = setup_data # Configuration Register [15:8]
data[2] = 0 # Configuration Register [7:0] (Reserved)
i2c.writeto(self.addr, data)

def read_temp(self, celsius=False):
""" Read the temperature
Keyword arguments:
celsius -- If True the temperature is returned in Celsius, else
Fahrenheit (default False).
"""
Set the pointer register to point to the temperature register.
data = bytearray([TEMP_REG])
self.i2c.writeto(self.addr, data)
Wait for conversion.
sleep(0.01)
data = self.i2c.readfrom(self.addr, 2) # Read two bytes.
Convert big-endian array of bytes to integer.
value = int.from_bytes(data, "big")
if celsius:

value = (value / (2 ** 16)) * 165 - 40
else:

value = (1.8 * value / (2 ** 16)) * 165 - 40
return value

def read_humidity(self):
""" Read the relative humidity """
Write to the pointer register, changing it to the humidity

register.
data = bytearray([HUMI_REG])
self.i2c.writeto(self.addr, data)
Wait for conversion.
sleep(0.01)
data = self.i2c.readfrom(self.addr, 2) # Read two bytes.
Convert big-endian array of bytes to integer.
value = int.from_bytes(data, "big")
return (value / (2 ** 16)) * 100

x = HDC1080(I2C(1, freq=200000), 64) # This sets up an instance of this
class.

print('Humidity:', x.read_humidity()) # Display humidity.
print('Temperature (C):', x.read_temp(True)) # Display temp in Celsius.
print('Temperature (F):', x.read_temp(False)) # Display temp in
Fahrenheit.

The following sample works with a DS1621 I2C temperature sensor. Make the following connections
before testing the code:

XBee pin Description DS1621 pin

DIO1 SCL 2

DIO11 SDA 1

Machine module Class I2C: two-wire serial protocol

Digi MicroPython Programming Guide 82

XBee pin Description DS1621 pin

VCC VCC 8

GND GND 4

In addition, connect the address pins of the DC1621 (5, 6 and 7) to ground, and a pullup resistor from
the SDA line to VCC.

Simple DS1621 I2C Example
Wiring Diagram:
XBee -> DS1621
SCL 2
SDA 1 (and connect via pullup resistor to Vcc)
Vcc 8
GND 4 (and address pins 5, 6 and 7)

import machine
import utime
import ustruct

i2c = machine.I2C(1)
slave_addr = 0x48 # 0b100_1000. Assumes A0-2 are low.

The high/low temperature registers are 9-bit two's complement signed
ints.
Data is written MSB first, so as an example the value 1 (0b1) is
represented
as 0b00000000 10000000, or 0x0080.
REGISTER_FORMAT = '>h'
REGISTER_SHIFT = 7

Read a 9-bit temperature from the DS1621. Values for <protocol>:
b'0xAA' for Read Temperature
b'0xA1' for TH Register
b'0xA2' for TL Register
Returns temperature in units of 0.5C. Fahrenheit = temp * 9 / 10 + 32
def read_temperature(protocol=b'\xAA'):

i2c.writeto(slave_addr, protocol, False)
data = i2c.readfrom(slave_addr, 2)
value = ustruct.unpack(REGISTER_FORMAT, data)[0] >> REGISTER_SHIFT
return value

def start_convert():
i2c.writeto(slave_addr, '\xEE', True)

def stop_convert():
i2c.writeto(slave_addr, '\x22', True)

def read_access_config():
i2c.writeto(slave_addr, '\xAC', False)
return i2c.readfrom(slave_addr, 1)

def write_access_config(value):
written = i2c.writeto(slave_addr, b'\xA1' + ustruct.pack('b', value))
assert written == 2, "Access Config write returned %d ?" % written

Machine module Class Pin

Digi MicroPython Programming Guide 83

def display_continuous():
start_convert()
try:

while True:
print('%.1fF' % (read_temperature() * 9 / 10 + 32))
utime.sleep(2)

except:
stop_convert()
raise

Perform a scan and make sure we find the slave device we want to talk
to.
devices = i2c.scan()
assert (slave_addr in devices,

"Did not see slave device address %d in scan result: %s" %
(slave_addr, devices))

display_continuous()

Class Pin
Note This section only applies to devices that support the Pin I/O feature.

Note Only pins D0-P2 are accessible using the Pin class.

You can use the Pin class with the XBee device. For information, see Class Pin: Control I/O pins.

Class UART
Note This section only applies to devices that support the Secondary UART feature.

MicroPython on the XBee Cellular Modem provides access to a 3-wire or 5-wire TTL-level serial port
(referred to as machine.UART(1)) on the following pins. The table also indicates the proper
connections when testing with an FTDI TTL-232R cable. Note that the FTDI cable's pin 3 (VCC) remains
unconnected.

XBee

Direction

FTDI TTL-232R

Pin Name Description Pin Name

10 GND Ground N/A 1 GND

11 DIO4 Transmit (TX) XBee → 5 RXD

4 DIO12 Receive (RX) XBee ← 4 TXD

18 DIO2 Ready to Receive (RTS) XBee → 2 CTS#

17 DIO3 Clear to Send (CTS) XBee ← 6 RTS#

Using the RTS and CTS pins for hardware flow control is optional. The XBee Cellular Modem can use
RTS to signal the remote end to stop sending when its receive buffer is close to full, and it will

http://docs.micropython.org/en/latest/pyboard/library/machine.Pin.html
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm

Machine module Class UART

Digi MicroPython Programming Guide 84

conversely monitor the CTS signal and only send when the remote end asserts the signal. Both RTS
and CTS are active low signals where 0 (GND) represents "asserted" (or "safe to send") and 1 (VCC)
represents "deasserted" (or "wait to send").

Test the UART interface
Once you have the hardware set up:

1. Open a terminal window to the MicroPython REPL on your XBee Cellular Modem.
2. Open a second terminal window to the TTL-232R cable you connected to DIO4/DIO12.
3. Leave DIO2/DIO3 disconnected and configure the second terminal window without any flow

control.
4. From the REPL prompt, press Ctrl-E to enter paste mode.
5. Paste the following test code (which uses the default baud rate of 115,200).

from machine import UART
import time

u = UART(1)
u.write('Testing from XBee\n')

while True:
uart_data = u.read()
if uart_data:

print(str(uart_data, 'utf8'), end='')
time.sleep_ms(5)

6. Press Ctrl-D on a blank line to execute it.
7. You should see the message Testing from XBee in the other terminal window, and anything

you type there should appear in your MicroPython terminal.
8. From the MicroPython terminal, use Ctrl-C to send a KeyboardInterrupt and exit the while

loop.

Use the UART class
UART implements the standard UART/USART duplex serial communications protocol. At the physical
level it consists of at least two lines: RX and TX, with support for optional hardware flow control using
RTS/CTS handshaking. The unit of communication is a character (not to be confused with a string
character) which can be 5 to 8 bits wide.
Create UART objects using the machine.UART() class:

from machine import UART
uart = UART(1, 9600) # create with given baudrate
uart.init(9600, bits=8, parity=None, stop=1) # reconfigure with given
parameters

A UART object acts like a stream object and uses the standard stream methods for reading and
writing.

uart.read(10) # read 10 characters, returns a bytes object
uart.read() # read all available characters
uart.readline() # read a line

Machine module Class UART

Digi MicroPython Programming Guide 85

uart.readinto(buf) # read and store into the given buffer
uart.write('abc') # write the 3 characters

To check if there is anything to be read, use:

uart.any() # returns the number of characters waiting

Constructors
class machine.UART(id, baudrate=115200, bits=8, parity=None, stop=1, *, flow=0, timeout=0,
timeout_char=0)

n id: XBee Cellular supports a single UART, using the id 1.
n baudrate: Clock rate for serial data.
n bits: Bits per character, a value from 5 to 8.
n parity: An additional parity bit added to each byte, either None, 0 (even) or 1 (odd).
n stop: Number of stop bits after the optional parity bit, either 1 or 2.
n flow: Hardware flow control; either 0 for none, UART.RTS for RTS-only, UART.CTS for CTS-only

or UART.RTS|UART.CTS for both.
n timeout: Number of milliseconds to wait for reading the first character.
n timeout_char: Number of milliseconds to wait between characters when reading.

You can pass parameters before the flow keyword without their names, for example: UART(1, 115200,
8, None, 1).

Note Unlike other MicroPython platforms, the XBee Cellular Modem uses a circular buffer to store
serial data, and the timeout and timeout_char settings do not apply to writes.

Methods
UART.init(baudrate=0, bits=0, parity=-1, stop=0, *, flow=-1, timeout=-1, timeout_char=-1)
See Constructors for descriptions of each keyword. The default values (used if a keyword is not
specified) leave the current setting unchanged. Calling UART.init() resets the port using the current
settings.
UART.deinit()
Turn off the UART bus. After calling deinit(), attempts to write to the UART result in an OSError
(EPERM) exception but reads continue to pull buffered bytes.
UART.any()
Returns an integer value of the number of bytes in the read buffer, or 0 if no bytes are available.
UART.read([nbytes])
Read characters. If nbytes is specified and a positive value, then read at most that many bytes,
otherwise read as much data as possible.
Return value: a bytes object containing the bytes read. Returns None on timeout.
UART.readinto(buf[, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at
most len(buf) bytes.
Return value: number of bytes read and stored into buf or None on timeout.
UART.readline()

Machine module Class WDT: watchdog timer

Digi MicroPython Programming Guide 86

Read a line, ending in a newline character.
Return value: the line read or None on timeout.
UART.write(buf)
Write the buffer of bytes to the bus.
Return value: number of bytes written.

Constants
Used to specify the flow control type.

UART.RTS

UART.CTS

Class WDT: watchdog timer
XBee 3 Cellular devices with firmware ending in *15 or newer and XBee3 DigiMesh, 802.15.4, or ZigBee
devices with firmware ending in *0A or newer contain the machine.WDT() object. It is primarily the
same as documented at wipy/library/machine.WDT. One primary difference is the addition of a
response parameter to the constructor. This allows you to select the behavior of the system when the
watchdog timer expires without being fed.
On XBee 3 DigiMesh, 802.15.4, or Zigbee devices, the default timeout for the watchdog is five seconds.
On XBee 3 Cellular devices, the default timeout has changed to one minute as blocking operations on
cellular can normally take many seconds to complete and in an initial attempt to use the watchdog
should not cause a reset.
The sleep_now and clean_shutdown operations which can be very lengthy will not trigger a
watchdog reset while in progress and the watchdog timer will have the full timeout upon coming out
of sleep.
Valid choices are:

n SOFT_RESET: resets only the MicroPython interpreter as if the soft_reset method in the device
had been called.

n HARD_RESET: Reboots the entire XBee device.
n CLEAN_SHUTDOWN: Shuts down the cellular component and then reboots. If the cellular

component cannot be cleanly shut down in two minutes it is reset anyway.

Note The CLEAN_SHUTDOWN option is only available on XBee 3 Cellular devices.

Access the XBee device's I/O pins
You can access the XBee device's I/O pins using the Pin class from the machine module. To get
started, import that class and use the help() function to display available methods and constants. The
REPL sessions below all assume you have started with from machine import Pin.

>>> from machine import Pin
>>> help(Pin)
object <class 'Pin'> is of type type
init -- <function>
value -- <function>
off -- <function>

http://docs.micropython.org/en/v1.9.3/wipy/library/machine.WDT.html

Machine module Access the XBee device's I/O pins

Digi MicroPython Programming Guide 87

on -- <function>
toggle -- <function>
name -- <function>
names -- <function>
af_list -- <function>
mode -- <function>
pull -- <function>
af -- <function>
mapper -- <classmethod>
dict -- <classmethod>
board -- <class 'board'>
DISABLED -- 15
IN -- 0
OUT -- 1
OPEN_DRAIN -- 17
ALT -- 2
ALT_OPEN_DRAIN -- 18
ANALOG -- 3
PULL_UP -- 1
PULL_DOWN -- 2
AF0_COMMISSION -- 0
AF1_SPI_ATTN -- 1
AF2_SPI_SCLK -- 2
AF3_SPI_SSEL -- 3
AF4_SPI_MOSI -- 4
AF5_ASSOC_IND -- 5
AF6_RTS -- 6
AF7_CTS -- 7
AF7_RS485_ENABLE_LOW -- 71
AF7_RS485_ENABLE_HIGH -- 135
AF8_SLEEP_REQ -- 8
AF9_ON_SLEEP -- 9
AF10_RSSI -- 10
AF12_SPI_MISO -- 12
AF13_DOUT -- 13
AF14_DIN -- 14
AF15_SPI_MISO -- 15
AF16_SPI_MOSI -- 16
AF17_SPI_SSEL -- 17
AF18_SPI_SCLK -- 18
AF19_SPI_ATTN -- 19

To see a list of pins available on your hardware, get help on the Pin.board class:

>>> help(Pin.board)
object <class 'board'> is of type type
D0 -- Pin(Pin.board.D0, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF0_

COMMISSION)
D1 -- Pin(Pin.board.D1, mode=Pin.DISABLED)
D2 -- Pin(Pin.board.D2, mode=Pin.DISABLED)
D3 -- Pin(Pin.board.D3, mode=Pin.DISABLED)
D4 -- Pin(Pin.board.D4, mode=Pin.DISABLED)
D5 -- Pin(Pin.board.D5, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF5_ASSOC_

IND)
D6 -- Pin(Pin.board.D6, mode=Pin.DISABLED)
D7 -- Pin(Pin.board.D7, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF7_CTS)
D8 -- Pin(Pin.board.D8, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF8_SLEEP_

REQ)
D9 -- Pin(Pin.board.D9, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF9_ON_SLEEP)

Machine module Use the Pin() constructor

Digi MicroPython Programming Guide 88

P0 -- Pin(Pin.board.P0, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF10_RSSI)
P1 -- Pin(Pin.board.P1, mode=Pin.DISABLED)
P2 -- Pin(Pin.board.P2, mode=Pin.DISABLED)
P3 -- Pin(Pin.board.P3, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF13_DOUT)
P4 -- Pin(Pin.board.P4, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF14_DIN)
P5 -- Pin(Pin.board.P5, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF15_SPI_

MISO)
P6 -- Pin(Pin.board.P6, mode=Pin.ALT, alt=Pin.AF16_SPI_MOSI)
P7 -- Pin(Pin.board.P7, mode=Pin.ALT, alt=Pin.AF17_SPI_SSEL)
P8 -- Pin(Pin.board.P8, mode=Pin.ALT, alt=Pin.AF18_SPI_SCLK)
P9 -- Pin(Pin.board.P9, mode=Pin.ALT, alt=Pin.AF19_SPI_ATTN)
D10 -- Pin(Pin.board.P0, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF10_RSSI)
D11 -- Pin(Pin.board.P1, mode=Pin.DISABLED)
D12 -- Pin(Pin.board.P2, mode=Pin.DISABLED)
D13 -- Pin(Pin.board.P3, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF13_DOUT)
D14 -- Pin(Pin.board.P4, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF14_DIN)
D15 -- Pin(Pin.board.P5, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF15_SPI_

MISO)
D16 -- Pin(Pin.board.P6, mode=Pin.ALT, alt=Pin.AF16_SPI_MOSI)
D17 -- Pin(Pin.board.P7, mode=Pin.ALT, alt=Pin.AF17_SPI_SSEL)
D18 -- Pin(Pin.board.P8, mode=Pin.ALT, alt=Pin.AF18_SPI_SCLK)
D19 -- Pin(Pin.board.P9, mode=Pin.ALT, alt=Pin.AF19_SPI_ATTN)

From the list above, you can see the current configuration of all the pins. Note that pins P0 through
P9 have aliases of D10 through D19. Also, through-hole XBee 3 RF products (802.15.4, DigiMesh and
Zigbee) still list pins P5 through P9 even though they are only accessible on the surface-mount
products.
You can assign any of the Pin.board objects to a variable that is easier to type (for example, d0 =
Pin.board.D0) or more descriptive (for example, status_led = Pin.board.D3). Multiple names for a pin
all reference the same physical pin, so changes made through one name appear in all other names.
For example, to change pin D0 from operating as a commissioning button, you could do the following:

>>> button = Pin.board.D0
>>> button.mode(Pin.IN)
>>> button
Pin(Pin.board.D0, mode=Pin.IN, pull=Pin.PULL_UP)
>>> Pin.board.D0
Pin(Pin.board.D0, mode=Pin.IN, pull=Pin.PULL_UP)
>>> button.value()
1
>>> button.value()
0

The names button and Pin.board.D0 both show the new configuration after using the mode()
method to make it an input. The example keeps the configuration of an internal pull up to Vcc to
simplify the button wiring—just short the pin to ground when you press the button. You can check the
status of the button using the value() method. It returns 0 when pressed (shorted to ground) and 1
otherwise (pulled up to Vcc).

Use the Pin() constructor
Use Pin(name, mode, pull=None, *, value, alt) to create a new Pin object with a specific
configuration. The name parameter can be a string (for example, D0) or reference to an existing Pin
object (for example, Pin.board.D0).

Machine module Use mode() to configure a pin

Digi MicroPython Programming Guide 89

Note By default pull is set to None and will disable a pull up/down resistor already configured for a
given pin.

The documentation for mode(), pull(), and value() also apply to those parameters in the Pin()
constructor. See Pin.ALT for usage of the alt parameter.

Use mode() to configure a pin
Note Using the Pin() constructor to change the mode() of a pin will automatically update the
corresponding AT command value to match and vice-versa. For example, setting pin D11 to disabled
sets the P1 AT command to 0.

Pin.DISABLED
If you are not using a pin, configure it as Pin.DISABLED.

Pin.IN
Pin acts as an input that you can read with the value() method, which returns 1 for high and 0 for
low. See the pull() method for configuring an internal pull up/down resistor on input pins.

>>> button = Pin.board.D0
>>> button.mode(Pin.IN)
>>> button.pull(Pin.PULL_UP)
>>> # or: button = Pin('D0', mode=Pin.IN, pull=Pin.PULL_UP)
>>> button
Pin(Pin.board.D0, mode=Pin.IN, pull=Pin.PULL_UP)
>>> Pin.board.D0
Pin(Pin.board.D0, mode=Pin.IN, pull=Pin.PULL_UP)
>>> button.value()
1
>>> # hold button and then read value again
>>> button.value()
0

Pin.OUT
Pin acts as an output that you can set by passing a parameter to the value() method. Any value that
evaluates to True sets the pin high (Vcc) and all other values set it low (ground). Pin objects also
support the on() and off() methods as shortcuts for value(1) and value(0) respectively, and toggle()
to toggle the current value. For example, you can override the association indicator normally
configured for D5 and control it manually:

>>> d5 = Pin.board.D5
>>> d5.mode(Pin.OUT)
>>> # turn LED off
>>> d5.value(0)
>>> # turn LED on
>>> d5.value(1)
>>> # turn LED off
>>> d5.off()
>>> # turn LED on
>>> d5.on()

Machine module Use pull() to configure an internal pull up/down resistor

Digi MicroPython Programming Guide 90

>>> # flash the LED at 2Hz (on .25 seconds, off .25 seconds)
>>> import time
>>> while True:
... d5.toggle()
... time.sleep(.25)
...
Traceback (most recent call last):
File "<stdin>", line 3, in <module>

KeyboardInterrupt:
>>>

Note Using the on() and off() names in your code could be confusing when using outputs wired as
"active low."

Pin.ALT
Selects an alternate function for the pin. Use the af_list() method on a Pin object for a list of alternate
functions available on a pin. You can select a pin's default alternate function by calling mode(Pin.AF),
but you need to use the Pin() constructor to select a specific alternate function if a pin supports more
than one. Use the af() method to see what a Pin's current alternate function is. Note that af() returns
an integer that you should compare to the Pin.AFx_XXX constants in your code, and not reference
directly as they may change between firmware releases.

>>> Pin.board.D5.af_list()
[Pin.AF5_ASSOC_IND]
>>> d5 = Pin('D5', mode=Pin.ALT, alt=Pin.AF5_ASSOC_IND)
>>> "is assoc" if d5.af() == Pin.AF5_ASSOC_IND else "not assoc"
'is assoc'
>>> d5.mode(Pin.IN)
>>> "is assoc" if d5.af() == Pin.AF5_ASSOC_IND else "not assoc"
'not assoc'

Pin.ANALOG
Use the machine.ADC() class instead of configuring a pin mode as Pin.ANALOG. A Pin object in use by
the ADC() class reports its mode as Pin.ANALOG.

>>> import machine
>>> a1 = machine.ADC('D1')
>>> # read analog input as value from 0-4095
>>> a1.read()
4095
>>> Pin.board.D1
Pin(Pin.board.D1, mode=Pin.ANALOG)

Pin.OPEN_DRAIN and Pin.ALT_OPEN_DRAIN
These modes from other MicroPython platforms are not supported on XBee products.

Use pull() to configure an internal pull up/down resistor
You typically only enable an internal pull up/down resistor on an input to keep it from floating.
Enabling, disabling, or changing the state of a pull up/down resistor using the Pin() constructor will

Machine module Use pull() to configure an internal pull up/down resistor

Digi MicroPython Programming Guide 91

automatically update the PR and PD parameter values and vice-versa. The Pin.pull() method and pull
parameter to the Pin() constructor take a single parameter:

n None: disable the internal resistor
n Pin.PULL_DOWN: enable a pull down to ground
n Pin.PULL_UP: enable a pull up to Vcc

digi.ble module

The digi.ble module provides interaction with the Bluetooth Low Energy (BLE) functionality of the
XBee device.
You can import the digi.ble module as follows:

from digi import ble

If you prefer, you can also use the digi.ble module as follows:

import digi

Example: disable BLE functionality.
digi.ble.active(False)

Feature support 93
active() 93
config() 94
disconnect_code() 95
gap_connect() 95
gap_connection methods 96
UUID() 103
gap_scan() 104
gap_scan methods 104
gap_scan advertisement format 105
Use gap_scan as an iterator 105
Use gap_scan as a context manager 106
gap_advertise() 106
xbee_connect() 107
xbee_connection methods 108
digi.ble samples 108
Troubleshooting 109

Digi MicroPython Programming Guide 92

digi.ble module Feature support

Digi MicroPython Programming Guide 93

Feature support
The following table shows which devices support the digi.ble module.

Feature XBee 3 Cellular XBee 3 Zigbee
XBee 3
802.15.4

XBee 3
DigiMesh

XBee
Cellular

active() Firmware
ending in *15 or
higher

Firmware 1009 or later Firmware
200A and
later

Firmware
300A and
later

Not
supported

config() Firmware
ending in *15 or
higher

1009: config('mac')
100A or later: config
('mac') , updating
configuration

Firmware
200A and
later

Firmware
300A and
later

Not
supported

delete_
bondings()

Firmware
ending in *15 or
higher

100A Firmware
200A and
later

Firmware
300A and
later

Not
supported

gap_scan() Firmware
ending in *15 or
higher

1009 Firmware
200A and
later

Firmware
300A and
later

Not
supported

gap_
advertise()

Firmware
ending in *15 or
higher

1009 Firmware
200A and
later

Firmware
300A and
later

Not
supported

gap_
connect()

Firmware
ending in *15 or
higher

100A Firmware
200A and
later

Firmware
300A and
later

Not
supported

io_
callbacks()

Firmware
ending in *15 or
higher

100A Firmware
200A and
later

Firmware
300A and
later

Not
supported

passkey_
confirm()

Firmware
ending in *15 or
higher

100A Firmware
200A and
later

Firmware
300A and
later

Not
supported

passkey_
enter()

Firmware
ending in *15 or
higher

100A Firmware
200A and
later

Firmware
300A and
later

Not
supported

secure() Firmware
ending in *15 or
higher

100A Firmware
200A and
later

Firmware
300A and
later

Not
supported

xbee_
connect()

Firmware
ending in *16 or
higher

100B and later 200B and
later

300B and
later

Not
supported

active()
Use this function to set or query whether BLE functionality is enabled on the XBee device. This
method is equivalent to the ATBT command.

digi.ble module config()

Digi MicroPython Programming Guide 94

ble.active([mode])

Without parameters:

n Returns True if BLE is enabled on the XBee device (ATBT = 1).
n Returns False if BLE is disabled on the XBee device (ATBT = 0).

With parameters:

n True: Enable BLE functionality.
n False: Disable BLE functionality.

config()
Query a BLE configuration value by name, or update one or more BLE configuration values.

ble.config(name)
ble.config([interval_ms=...,][latency=...,][timeout_ms=...])

Query a value
To query a BLE configuration value, pass the name of the value as a string. Currently supported values
are:

n "mac": Returns the device BLE MAC address, as a bytes object.
n "interval_ms": Initial connection interval to use on future GAP connections, as an integer.
n "latency": Initial slave latency value to use on future GAP connections, as an integer.
n "timeout_ms": Initial connection supervision timeout to use on future GAP connections, as an

integer.

Update configuration values
To update one or more BLE configuration values, pass the value(s) as keyword argument(s). config
returns None—in other words it has no return value—when updating settings.

<interval_ms>
Update the initial connection interval to use on future GAP connections—see gap_connect().
The connection interval is the time between two data transfer events on the GAP connection. The
value will be rounded down to the nearest multiple of 1.25 milliseconds. interval_ms may be between
8 and 4000 (4 seconds).
Default value (restored at XBee power-up): 50 milliseconds.

<latency>
Update the initial slave latency to use on future GAP connections—see gap_connect().
The slave latency is the number of consecutive connection events that the connected peripheral is
allowed to skip before the connection is dropped. latency may be between 0 and 500.
Default value (restored at XBee power-up): 0.

digi.ble module disconnect_code()

Digi MicroPython Programming Guide 95

<timeout_ms>
Update the initial connection supervision timeout to use on future GAP connections—see gap_connect
().
The connection supervision timeout value is the time that the central device (in this case, the XBee)
will wait for a data transfer before assuming that the connection is lost. timeout_ms may be between
100 and 32000 (32 seconds). timeout_ms must be larger than 2 * interval_ms * (latency + 1) .
Default value (restored at XBee power-up): 1000 milliseconds (1 second).

disconnect_code()
When called on a connection which has been closed, returns a value from the Bluetooth Core
specification Vol 2, Part D (Error Codes) indicating the reason for the disconnect. Calling this on an
open connection returns zero.
The most common values to see here include:

8 - Connection timeout
19 - Remote user terminated
22 - Connection terminated by local host

gap_connect()
Connect to a BLE device. The address type and the address are required arguments.

connection = ble.gap_connect(addr_type, address[, timeout_ms=5000][, interval_
us][, window_us][, onclose])

<addr_type>
The <addr_type> parameter specifies the address type.
The possible values are defined as constants on the digi.ble module:

Constants Applicable firmwares

ble.ADDR_TYPE_PUBLIC 802.15.4, Zigbee, DigiMesh, Cellular devices

ble.ADDR_TYPE_RANDOM 802.15.4, Zigbee, DigiMesh, Cellular devices

ble.ADDR_TYPE_PUBLIC_IDENTITY * 802.15.4, Zigbee, DigiMesh, Cellular devices

ble.ADDR_TYPE_RANDOM_IDENTITY * 802.15.4, Zigbee, DigiMesh, Cellular devices

* ble.ADDR_TYPE_PUBLIC_IDENTITY and ble.ADDR_TYPE_RANDOM_IDENTITY are removed in
802.15.4’s 0x200B release and removed in Zigbee’s 0x300B release. These constants are going to be
removed from future releases of DigiMesh and Cellular firmwares so we do not advise using them.

<address>
The <address> parameter is a bytes object which represents the BLE MAC address that is the target of
the connection.

digi.ble module gap_connection methods

Digi MicroPython Programming Guide 96

<timeout_ms>
The <timeout_ms> parameter specifies the timeout before giving up on a connection. When a
connection times out, OSError ETIMEDOUT is raised.

Note The connection attempt will automatically time out if the remote peripheral does not respond to
a connection request within six connection intervals—see the <interval_ms> parameter.

<interval_us>, <window_us>
Use <interval_us> and <window_us> to optionally configure the duty cycle to scan for the remote
device. The scanner will run for <window_us> microseconds every <interval_us> microseconds.
The default interval and window are 20 milliseconds and 11.25 milliseconds, respectively. Both values
must be at least 2,500 microseconds (2.5 milliseconds) and no more than approximately 40.96
seconds (40,959,375 microseconds).

<onclose>
The <onclose> parameter assigns a function as a callback to be triggered on receiving a close event
on the connection. The onclose function will be called with two arguments, the ble_connection
object that received the disconnect event and the disconnect code.

Note The supplied disconnect code is also stored on the ble_connection object itself, see
disconnect_code() for more information on disconnect codes.

Return value
If the GAP connect operation is started successfully, a gap_connection object is returned.
If the GAP connect operation is not successful, an OSError is raised.

gap_connection methods
The methods available on a gap_connection object—returned by the gap_connect()\ function—are as
follows.

gattc_services()
Discover Generic Attribute Profile (GATT) services in the remote device's database. A specific service
can be discovered by specifying the UUID of the service.

connection.gattc_services([, uuid])

<uuid>
The <uuid> parameter is either a UUID object or a value that can construct a UUID object. When
specified, the iterator only returns the service with that UUID, otherwise all services are returned.

Return value
If the GATT service discovery operation is successful, an iterator is returned containing tuples with the
following information about each discovered service:

digi.ble module gap_connection methods

Digi MicroPython Programming Guide 97

(handle, uuid)

<handle>
The <handle> is an integer used to reference the service.

<uuid>
The <uuid> is an UUID object.
If the GATT service discovery operation is not able to be started, an OSError is raised.

gattc_characteristics()
Discover GATT characteristics of a service in the remote device's database. A specific characteristic
can be discovered by specifying the UUID of the characteristic.

connection.gattc_characteristics(service[, uuid])

<service>
The <service> parameter is a service handle discovered from gattc_services().

<uuid>
The <uuid> parameter is either a UUID object or a value that can construct a UUID object. When
specified, the iterator or only returns the characteristic(s) with that UUID, otherwise all characteristics
are returned.

Return value
If the GATT characteristic discovery operation is successful, an iterator is returned containing tuples
with the following information about each discovered characteristic:

(handle, uuid, properties)

<handle>
The <handle> is an integer used to reference the characteristic.
<uuid>
The <uuid> is an UUID object.
<properties>
<properties> is an integer containing the property flags. These flags are defined as constants in the
digi.ble module.
They are the following:

n PROP_BROADCAST
n PROP_READ
n PROP_WRITE_NO_RESP
n PROP_WRITE
n PROP_NOTIFY
n PROP_INDICATE
n PROP_AUTH_SIGNED_WR

digi.ble module gap_connection methods

Digi MicroPython Programming Guide 98

If the GATT characteristic discovery operation is not able to be started, an OSError is raised.

gattc_descriptors()
Return an iterator of all GATT descriptors of a characteristic in the remote device's database. Note
that this returns an iterator and the descriptor discovery will not be completed until the iterator is
emptied.

connection.gattc_descriptors(characteristic)

<characteristic>
The <characteristic> parameter is a characteristic handle discovered from gattc_characteristics.

Return value
If the GATT descriptor discovery operation is successful, an iterator is returned containing tuples with
the following information about each discovered descriptor:

(handle, uuid)

<handle>
The <handle> is an integer used to reference the descriptor.

<uuid>
The <uuid> is an UUID object.
If the GATT descriptor discovery operation is not able to be started, an OSError is raised.

gattc_read_characteristic()
Issue a remote read to the connected peripheral to the specified characteristic.

connection.gattc_read_characteristic(characteristic_handle)

<characteristic_handle>
The <characteristic_handle> parameter is a characteristic handle discovered from gattc_
characteristics.

Return value
gattc_read_characteristic returns a bytes object containing the characteristic attribute value.
If the characteristic passed in is invalid or the connection to the peripheral device is lost, an OSError
is raised.
If the required read permissions for the characteristic are not met then an empty bytes object is
returned.

gattc_configure()
Enable or disable notifications/indications for a given characteristic. This configures the remote server
to send notifications/indications and registers the passed callback to be called when one is received.

digi.ble module gap_connection methods

Digi MicroPython Programming Guide 99

connection.gattc_configure(characteristic_handle,[callback=None][,
notification=False]

<characteristic_handle>
The <characteristic_handle> parameter is a characteristic handle discovered from gattc_
characteristics, whose characteristic has the notify property—ble.PROP_NOTIFY—or the indicate
property—ble.PROP_INDICATE.

<callback>
The <callback> parameter is a user defined callback that is called whenever a notification or
indication is received from the passed characteristic.
This callback should have two parameters. The first is the data, a bytes object. The second is an
integer indicating the offset of the data.
If None is passed as the <callback> parameter or <callback> is not specified, notifications/indications
are disabled for the characteristic.

<notification>
The <notification> parameter is an optional parameter used to distinguish between using
notifications instead of indications. By default, indications are used. If <notification> is set to True,
notifications are used instead of indications.

Note Notifications are unacknowledged by the client and do not guarantee delivery of the data.

gattc_read_descriptor()
Issue a remote read to the connected peripheral to the specified descriptor.

connection.gattc_read_descriptor(descriptor_handle)

<descriptor_handle>
The <descriptor_handle> parameter is a descriptor handle discovered from gattc_descriptors.

Return value
gattc_read_descriptor returns a bytes object containing the descriptor attribute value.
If the descriptor handle passed in is invalid or the connection to the peripheral device is lost, an
OSError is raised.
If the required read permissions for the descriptor are not met then an empty bytes object will be
returned.

gattc_write_characteristic()
Issue a remote write to the connected peripheral to the specified characteristic.

connection.gattc_write_characteristic(characteristic_handle, data)

<characteristic_handle>
The <characteristic_handle> parameter is a characteristic handle discovered from gattc_
characteristics.

digi.ble module gap_connection methods

Digi MicroPython Programming Guide 100

<data>
The <data> parameter specifies the data to be written to the remote characteristic.

Return value
gattc_write_characteristic returns None—in other words it has no return value.
If the characteristic handle passed in is invalid or the connection to the peripheral device is lost, an
OSError is raised.

gattc_write_descriptor()
Issue a remote write to the connected peripheral to the specified descriptor.

connection.gattc_write_descriptor(descriptor_handle, data)

<descriptor_handle>
The <descriptor_handle> parameter is a descriptor handle discovered from gattc_descriptors.

<data>
The <data> parameter specifies the data to be written to the remote descriptor.

Return value
gattc_write_descriptor returns None—in other words it has no return value.
If the descriptor handle passed in is invalid or the connection to the peripheral device is lost, an
OSError is raised.

addr()
Returns the BLE peripheral device's address and address type.

address_type, address = connection.addr()

Return value
addr A 2-tuple containing the BLE addressing information of:

n BLE address type of the peripheral device, as an int type.
n BLE address of the peripheral device, formatted as a ``bytes`` object.

close()
Close the connection. The connection object will no longer be usable.

connection.close()

config()
Query a BLE connection configuration value by name, or update one or more BLE connection
configuration values.

digi.ble module gap_connection methods

Digi MicroPython Programming Guide 101

connection.config(name)
connection.config([interval_ms=...,][latency=...,][timeout_ms=..])

All parameters must be specified as keyword argument, for example:

Query a value
To query a connection's BLE configuration value, pass the name of the value as a string. Currently
supported values are:

n "interval_ms": BLE connection interval, as an integer.
n "latency": BLE slave latency, as an integer.
n "mtu": BLE MTU size, as an integer.
n "timeout_ms": BLE connection supervision timeout, as an integer.

To control these timing parameters before opening a connection, see config().

Update configuration values
To update one or more of the BLE timing parameters for this connection, use config() with keyword
arguments. For example:

connection.config(interval_ms=100, timeout_ms=1000)

<interval_ms>
The connection interval is the time between two data transfer events on the GAP connection. The
value will be rounded down to the nearest multiple of 1.25 milliseconds. interval_ms may be between
8 and 4000 (4 seconds).
Default value (restored at XBee power-up): 50 milliseconds.

<latency>
The slave latency is the number of consecutive connection events which the connected peripheral is
allowed to skip before the connection is dropped. latency may be between 0 and 500.
Default value (restored at XBee power-up): 0.

<timeout_ms>
The connection supervision timeout value is the time that the central device—in this case, the XBee—
will wait for a data transfer before assuming that the connection is lost. timeout_ms may be between
100 and 32000 (32 seconds). timeout_ms must be larger than 2 * timeout_ms * (latency + 1) .
Default value—restored at XBee power-up: 1000 milliseconds (1 second).
If the configuration could not be updated, an OSError is raised.

security
The security argument takes a bit mask of the following values:

n PAIRING_REQUIRE_MITM: If set, MITM protection must be used during the pairing process. It is
an error to attempt to set this flag when no I/O callbacks have been set yet with the io_
callbacks() method.

n PAIRING_REQUIRE_BONDING: Require the use of bonding to enable encryption. When
connections are secured bonding table entries are created to remember the negotiated keys
for future sessions. The device will remember up to 13 bonding table entries. If an attempt to

digi.ble module gap_connection methods

Digi MicroPython Programming Guide 102

bond with additional devices occurs when the bonding table is full the least recently used
bonding table entry is dropped to allow insertion of the new entry.

n PAIRING_DISABLE_LEGACY: Disables the use of legacy pairing when securing the connection,
only LE Secure Connections will be used.

isconnected()
Determines whether BLE is connected to a BLE peripheral device.

connection.isconnected()

Return value
isconnected returns True if the BLE is connected to BLE peripheral device, False otherwise.

secure()
Performs pairing/bonding on a connection.

secure(secure_cb)

<secure_cb>
A callback which is called upon completion of the pairing operation. It is passed the value zero if the
pairing succeeded, otherwise it is passed an error code as documented in the BLE Core specification.
Values between 0-127 are from Vol 11, Part F. Values from 128-255 are Pairing Errors and can be seen
in Vol 3, Part H, section 3.5.5 in Table 3.7.
See also the security argument to ble.config to guide the behavior of the pairing/bonding operation.

io_callbacks()
Provide callbacks that define IO capabilities for pairing.

io_callbacks([display_cb=None][, confirm_cb=None][, request_cb=None])

<display_cb>
Callback to be used to present a passkey to the user.

<confirm_cb>
Callback to be used when the user must confirm (Y/N) a passkey. The passkey is provided as an
argument. The passkey should be presented to the user and the user's input should be fed back using
ble.passkey_confirm.

Note If you are providing a display_cb and request_cb, you must provide a confirm_cb. Based on
the I/O capabilities of the peer it may be necessary to perform either input or confirmation of a
passkey.

<request_cb>
Callback to indicate that the user must input a passkey value. The user should be prompted to enter a
passkey and the passkey provided by the user should be fed back using ble.passkey_enter.

digi.ble module UUID()

Digi MicroPython Programming Guide 103

Note The BLE standards recommend that the passkey be presented to the user as a six digit number
padded with leading zeros.

delete_bondings()
Remove all stored bonding table entries.

delete_bondings()

This function deletes the contents of the bonding table. This puts the device back into the initial state
and can be used to provision a device for redeployment or during development for device testing.

passkey_enter()
Allows user entry of a passkey value.

passkey_enter(passkey)

<passkey>
The numeric value of the passkey provided by the user.

passkey_confirm()
Allows user confirmation of BLE pairing passkey.

passkey_confirm(confirmation)

<confirmation>
Provide True if the passkey provided by the confirm_cb is correct, False otherwise.

UUID()
Create a UUID container.

ble.UUID(value)

<value>
The value parameter can be either:

n A 16-bit integer. For example 0x2893.
n A 128-bit UUID string. For example 'eb76d48b-a885-4059-b70e-adfc7f33d255'.

Return value
A UUID object containing the passed UUID.
To read the UUID value, convert the UUID object into a bytes or bytearray object:

uuid = ble.UUID(0x1010)
uuid_value = bytes(uuid)
b'\x10\x10'

digi.ble module gap_scan()

Digi MicroPython Programming Guide 104

The size, in bytes, of the UUID value can be determined using the built-in len function:

assert len(ble.UUID(0x1234)) == 2 # 16 bits
assert len(ble.UUID('eb76d48b-a885-4059-b70e-adfc7f33d255')) == 16 # 128 bits

gap_scan()
Run a GAP scan/discovery operation to collect advertisements from nearby BLE devices.

ble.gap_scan(duration_ms[, interval_us][, window_us][, oldest=False])

<duration_ms>
The <duration_ms> parameter specifies the duration of the GAP scan operation, in milliseconds. To
scan indefinitely, set <duration_ms> to 0.

<interval_us>, <window_us>
Use <interval_us> and <window_us> to optionally configure the duty cycle. The scanner will run
for <window_us> microseconds every <interval_us> microseconds.
The default interval and window are 1.28 seconds and 11.25 milliseconds, respectively. Both values
must be at least 2,500 microseconds (2.5 milliseconds) and no more than approximately 40.96
seconds (40,959,375 microseconds).

<oldest>
Received GAP advertisements are stored in order from oldest (earliest-received) to newest (most-
recently-received). When the internal queue of advertisements is full, the default behavior is to discard
the oldest advertisement in order to make room for the newly-received advertisement.
If your application depends on retaining older advertisements at the expense of losing newer
advertisements, set the oldest argument to True. This will cause new advertisements to be discarded
if the internal queue is full.

Return value
If the GAP scan operation is started successfully, a gap_scan object is returned.
If the GAP scan operation is not able to be started, an OSError is raised.

gap_scan methods
The methods available on a gap_scan object—returned by the gap_scan() function—are as follows.

get()
Return a list of all received GAP advertisements currently in the internal queue. This list may be
empty.
If the GAP scan has timed out—see <duration_ms> argument—or stop() has been called, this method
will return any remaining advertisements, but no new advertisements will be stored.

digi.ble module gap_scan advertisement format

Digi MicroPython Programming Guide 105

any()
Returns True if there are any GAP advertisements in the internal queue, otherwise returns False.

stop()
Stop the ongoing GAP scan operation. Any already-received GAP advertisements will be retained—
see get().

stopped()
Returns True if the GAP scan operation has been stopped—using stop()—or has timed out, otherwise
returns False.

gap_scan advertisement format
Received GAP advertisements are formatted as a dictionary, whose entries are as follows:

n address: The BLE MAC address of the received advertisement. Formatted as a bytes object.
n addr_type: The type of address contained in the address field. The possible values are defined

as constants on the digi.ble module:

Constants Applicable firmwares

ble.ADDR_TYPE_PUBLIC 802.15.4, Zigbee, DigiMesh, Cellular devices

ble.ADDR_TYPE_RANDOM 802.15.4, Zigbee, DigiMesh, Cellular devices

ble.ADDR_TYPE_PUBLIC_IDENTITY * 802.15.4, Zigbee, DigiMesh, Cellular devices

ble.ADDR_TYPE_RANDOM_IDENTITY * 802.15.4, Zigbee, DigiMesh, Cellular devices

* ble.ADDR_TYPE_PUBLIC_IDENTITY and ble.ADDR_TYPE_RANDOM_IDENTITY are removed in
802.15.4’s 0x200B release and removed in Zigbee’s 0x300B release. These constants are going to be
removed from future releases of DigiMesh and Cellular firmwares so we do not advise using them.

n connectable: True if the advertising device indicates that BLE central-mode devices may
connect to it, False otherwise.

n rssi: The received signal strength of the advertisement, in dBm.
n payload: The raw advertisement payload. Formatted as a bytes object.

Use gap_scan as an iterator
Instead of calling the get() method repeatedly to access received GAP advertisements, the gap_scan
object may be used as an iterator, in other words, as the target of a for -loop.
Using the gap_scan object as an iterator is the preferred means to access the received
advertisements, because calling get() requires allocating a list and filling the list with each
advertisement, whereas iterating over the gap_scan object only requires creating one dictionary at a
time.
See the following example.

digi.ble module Use gap_scan as a context manager

Digi MicroPython Programming Guide 106

scan = ble.gap_scan(duration_ms=10000) # 10 seconds
for advertisement in scan:

print(advertisement)

Use gap_scan as a context manager
Instead of needing to remember to call stop() when you wish to end a GAP scan operation, you may
instead use a gap_scan object as a context manager. This way, when the with block is exited, the GAP
scan operation is automatically stopped. This approach uses less code and is more elegant.
For example, if you want to run a GAP scan until any advertisement whose payload contains a
particular byte string is found, you can do this without a context manager as shown here:

def find_advertisement(search_string):
scan = ble.gap_scan(duration_ms=0)
try:

for adv in scan:
if search_string in adv["payload"]:

return adv
finally:

Make sure to call stop(), even if an exception is raised.
scan.stop()

adv = find_advertisement(b"Hello, XBee")

If you instead use gap_scan as a context manager, using the with statement, you do not need a
try/finally block, nor do you need to call stop() yourself.

def find_advertisement(search_string):
with ble.gap_scan(duration_ms=0) as scan:

for adv in scan:
if search_string in adv["payload"]:

return adv

adv = find_advertisement(b"Hello, XBee")

gap_advertise()
Start or stop GAP advertisements from the XBee device.

ble.gap_advertise(interval_us, adv_data=None)

<interval_us>
Start advertising at the specified interval, in microseconds. This value will be rounded down to the
nearest multiple of 625 microseconds. The interval, if not None, must be at least 20,000 microseconds
(20 milliseconds) and no larger than approximately 40.96 seconds (40,959,375 microseconds).
To stop advertising, set <interval_us> to None.

<adv_data>
This is the payload that will be included in GAP advertisement broadcasts. <adv_data> can be
a bytes or bytearray object up to 31 bytes in length, or None.
If <adv_data> is empty—for example b''—then GAP advertising will return to the default XBee
behavior, which is to advertise the product name—such as XBee3 Zigbee, or the value in ATBI.

digi.ble module xbee_connect()

Digi MicroPython Programming Guide 107

If <adv_data> is None or not specified, then the data passed to the previous call to gap_advertise is
used, unless there was no previous call or the previous data was empty, in which case the behavior
will be as if an empty value—b''—was passed.
Otherwise, <adv_data> should consist of one or more Advertising Data (AD) elements, as defined in
the Bluetooth Core Specification Supplement, Part A Section 1.

n Each AD element consists of a length byte, a data type byte, and one or more bytes of data.
The length byte indicates how long the rest of the element is, for example a Complete Local
Name element with value My XBee would have a length byte 0x08 – 1 byte for type plus 7
bytes for the value.

n The Bluetooth SIG provides the list of defined Advertising Data element types
here: https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/

Be aware that <adv_data> must be formatted as one or more Advertising Data elements in order to
be interpreted as a valid Bluetooth Low Energy advertisement by other devices. For example, to
advertise the name My XBee:

ble.gap_advertise(200000, b"\x08\x09My XBee")

Return value
gap_advertise returns None—i.e. it has no return value.
If BLE functionality is not currently active—see active()—gap_advertise will raise an OSError.

xbee_connect()
Authenticates to a connected XBee 3 over BLE and provides access to the API Service running on the
remote XBee.

xbee_connection = ble.xbee_connect(gap_connection, receive, password[,
timeout=10])

<gap_connection>
The <gap_connection> parameter takes the result of calling ble.gap_connect previously and the
connected device should be another XBee 3 device offering the BLE API Service.

CAUTION! If using xbee_connect refrain from using characteristics from the API service
directly as well because that will corrupt the state maintained by the xbee_connection
object.

For more information on the API Service see the user guide for your device, for example the BLE
Unlock API frame and XBee API BLE Service.

<receive>
The <receive> parameter takes a callable MicroPython function. The function should accept a single
argument and return None. After authentication with the remote XBee device, this callback will be
called whenever an API frame from the peer is ready to be processed. The callback will be called with
the entire frame as an object of type bytes, including initial delimiter and checksum. The checksum is
validated by the internal logic. Bad data from the peer will be dropped with no calls to the callback.

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/
https://www.digi.com/resources/documentation/digidocs/90002258/#reference/r_frame_0x2c.htm%3FTocPath%3DAPI%2520frames|BLE%2520Unlock%2520API%2520-%25200x2C|_____0
https://www.digi.com/resources/documentation/digidocs/90002258/#reference/r_frame_0x2c.htm%3FTocPath%3DAPI%2520frames|BLE%2520Unlock%2520API%2520-%25200x2C|_____0
https://www.digi.com/resources/documentation/digidocs/90002258/#reference/r_ble_behavior_services_xbee_api_ble.htm

digi.ble module xbee_connection methods

Digi MicroPython Programming Guide 108

<password>
The <password> parameter is the password to be used to authenticate with the remote XBee device.

<timeout>
The <timeout> parameter is a value in seconds. If the authentication has not completed within
<timeout> seconds an exception of type OSError will be raised with the value ETIMEDOUT.
Acceptable values are within the range of 5-60 seconds.

Return value
On success an object of type xbee_connection is returned.

xbee_connection methods
Currently the xbee_connection object only offers a single method. The send method takes a bytes
object as an argument and transmits it to the connected remote peer over the encapsulated gap_
connection object. The bytes object should constitute a legal API frame for the remote peer to
process. The send method does not validate transmit data.
To ensure that an API frame has the correct format, consult the product user guide, for example: API
frame format.

digi.ble samples
On the digidotcom github there are Bluetooth sample programs found here. Read the accompanying
README for each sample for guidance on usage.

Generic gap advertising and gap scanning samples
There are two simple Bluetooth samples available. Both of these do not require any additional
libraries to run.
The first sample, gap_advertise advertises a new local name for the XBee specified in the sample.
The second sample, gap_scan shows how to scan and interact with advertisements, printing all found
advertisements.

Eddystone Beaconing samples
There are two samples available for Eddystone beaconing. Both of which require the
provided Eddystone Library.
The first sample, eddystone_advertise, which forms and advertises the three types of beacons the
library supports.
The second sample, eddystone_parse scans for beacons and prints out any Eddystone beacons it
discovers.

iBeacon samples
There are two samples available for iBeacon, both of which require the provided iBeacon Library.
The first sample is iBeacon_advertise, which forms and advertises iBeacon beacons.
The second sample is iBeacon_scan, which scans for and prints out any iBeacon beacons it discovers.

https://www.digi.com/resources/documentation/digidocs/90002258/#reference/r_api_frame_format.htm%3FTocPath%3DOperate%2520in%2520API%2520mode|API%2520frame%2520format|_____0
https://www.digi.com/resources/documentation/digidocs/90002258/#reference/r_api_frame_format.htm%3FTocPath%3DOperate%2520in%2520API%2520mode|API%2520frame%2520format|_____0
https://github.com/digidotcom/xbee-micropython/tree/master/samples/bluetooth
https://github.com/digidotcom/xbee-micropython/tree/master/lib/eddystonebeacon
https://github.com/digidotcom/xbee-micropython/tree/master/lib/iBeacon

digi.ble module Troubleshooting

Digi MicroPython Programming Guide 109

Troubleshooting

Fewer advertisements than expected when using gap_scan
When using the digi.ble.gap_scan() function, the default interval and window are 1.28 seconds and
11.25 milliseconds, respectively. This quote from the Bluetooth Core Specification explains these
parameters:

During scanning, the Link Layer listens on a primary advertising channel index for the duration
of the scan window, scanWindow. The scan interval, scanInterval, is defined as the interval
between the start of two consecutive scan windows.

In other words, with the default scan interval and window parameters, the XBee device only listens for
advertisements for 11.25 milliseconds every 1.28 seconds, which is an effective duty cycle of about
0.9% (11250 / 1280000).
To increase the likelihood of observing any particular advertisement, you may increase the window,
decrease the interval, or both. To continuously listen for advertisements, set both parameters to the
same value.
Be aware that increasing the BLE GAP scan duty cycle will increase the power consumption of the
XBee device, and can have negative impacts on the performance of Zigbee interactions—on XBee 3
Zigbee RF Modules. The gap_scan parameters must be adjusted to each deployment's energy
consumption and specific networking requirements.

Cellular network configuration module

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

The network configuration module provides network drivers for specific hardware, which you can use
to configure the hardware network interfaces.

Configure a specific network interface 111
class Cellular 111

Digi MicroPython Programming Guide 110

Cellular network configuration module Configure a specific network interface

Digi MicroPython Programming Guide 111

Configure a specific network interface
Network services provided by the configured interfaces are available for use from the socket module.
For more information about the socket module, see the MicroPython documentation: socket module.

Note The Digi version of MicroPython differs from MicroPython regarding the SSL API. The XBee
Cellular Modem supports secure sockets via the usocket.IPPROTO_SEC option to the usocket.socket
() constructor, but does not include the ussl module for wrapping sockets and providing certificates
and keys.

This example shows how to configure a specific network interface:

from machine import UART
import sys, time

def uart_init():
u = UART(1)
u.write('Testing from XBee\n')
return u

def uart_relay(u):
while True:

uart_data = u.read(-1)
if uart_data:

sys.stdout.buffer.write(uart_data)
stdin_data = sys.stdin.buffer.read(-1)
if stdin_data:

u.write(stdin_data)

time.sleep_ms(5)

u = uart_init()
uart_relay(u)

For information about the cellular class, which provides a driver for the Cellular modem in the XBee,
see class Cellular.

class Cellular
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

This class provides a driver for the cellular modem in the XBee device.
For example:

import network
import time
cellular = network.Cellular()
while not cellular.isconnected():

time.sleep_ms(50)
print(cellular.ifconfig())

now use socket as usual
...

http://docs.micropython.org/en/latest/pyboard/library/usocket.html

Cellular network configuration module class Cellular

Digi MicroPython Programming Guide 112

Constructors
Use the constructor to create an XBee Cellular object.

class network.Cellular()

Cellular power and airplane mode method
This method determines whether the XBee Cellular Modem is powered on or in airplane mode.

cellular.active([mode])

Without parameters:

n Returns True if the XBee Cellular Modem is powered on.
n Returns False if the XBee Cellular Modem is in airplane mode.

With parameters:

n False: XBee Cellular Modem enters airplane mode.
n True: XBee Cellular Modem leaves airplane mode.

Note No changes to the XBee Cellular Modem are made if the parameter matches the current mode.

Verify cellular network connection method
This method determines whether the XBee Cellular Modem is connected to a network.

cellular.isconnected()

n True: The XBee Cellular Modem is connected to a cellular network and has a valid IP address.
n False: Otherwise.

Cellular connection configuration method
The ifconfig() method reports on the IP addressing. See Check the network connection for details.
The config() method reports on and allows configuration of the network interface. See Check network
connection and print connection parameters for an example.
For additional information about network configuration, see the MicroPython network configuration
documentation.

Send an SMS message method
This method sends a message to a phone using SMS.

cellular.sms_send(phone, message)

where:

n phone: The phone number of the device to which the message should be sent. This variable
can be a string or an integer.

n message: The contents of the message. The message should be a string or a bytes object of 7-
bit ASCII characters.

http://docs.micropython.org/en/latest/pyboard/library/network.html
http://docs.micropython.org/en/latest/pyboard/library/network.html

Cellular network configuration module class Cellular

Digi MicroPython Programming Guide 113

Possible return values:

n None: The cellular network acknowledges receipt of the message. The method throws a
ValueError for invalid parameters.

Throws an OSError exception:

n ENOTCONN: The cellular mode has not connected.
n ETIMEDOUT: If the network doesn't acknowledge the message in a reasonable amount of time.
n EIO: If there was some other error in sending the messages.

Receive an SMS message method
You can use the sms_receive() method on the network.Cellular() class to receive any SMS messages
that have been sent.

cellular.sms_receive()

This class returns one of the following:

n None: There is no message.
n A dictionary with the following keys:

l message: The message text, which is converted to a 7-bit ASCII with extended Unicode
characters changed to spaces.

l sender: The phone number from which the message was sent.
l timestamp: The number of seconds since 1/1/2000, which is passed to time.localtime()

and then converted into a tuple of datetime elements.

Register an SMS Receive Callback method
You can use the sms_callback() method on the network.Cellular() class to register a callback.

cellular.sms_callback(my_callback)

The callback will be called whenever an SMS message is received.

Note When a callback is registered, using cellular.sms_receive() will raise an error as only one
method of SMS delivery is supported at a time.

The callback function must have one parameter:

n A dictionary with the following keys:
l message: The message text, which is converted to a 7-bit ASCII with extended Unicode

characters changed to spaces.
l sender: The phone number from which the message was sent.
l timestamp: The number of seconds since 1/1/2000, which is passed to time.localtime()

and then converted into a tuple of datetime elements.

Cellular shutdown method
This method will properly and safely shut down the cellular modem.

Cellular network configuration module class Cellular

Digi MicroPython Programming Guide 114

cellular.shutdown(reset=[reset])

Where reset can be True or False.
If reset is set to True, the XBee Cellular will be rebooted after the cellular modem has been shut down.
If reset is set to False, the XBee Cellular will not be rebooted, but the cellular modem will have been
shut down.
If False, you would typically use a machine.reset() after this command to emulate the reset=True
option.

RSRP/RSRQ reporting in MicroPython
The network.Cellular() object contains a signal() function.
When called network.Cellular() will return a dictionary containing up to three signal quality
indicators if they are currently available. The possible entries in the dictionary and their meaning are
in the table below.

key

rsrp Reference Signal Received Power in dBm

rsrq Reference Signal Received Quality in dB

rssi Received Signal Strength Indicator in dB

If the module is in a PSM dormant state, the signal() function will throw an ENOTCONN error.
It is possible for the device to be in a state where signal information is not provided in a timely
fashion, so the function will raise an OSError with value ETIMEDOUT should it take longer than five
seconds to attempt to retrieve the signal values.
This applies to all XBee Cellular LTE variants, but not to the XBee Cellular 3G Global Embedded
Modem.

XBee module

The functions in this section are specific to the XBee device hardware.

AT commands that do not work in MicroPython 116
class XBee on XBee Cellular Modem 116
XBee MicroPython module on the XBee 3 RF Modules 117

Digi MicroPython Programming Guide 115

XBee module AT commands that do not work in MicroPython

Digi MicroPython Programming Guide 116

AT commands that do not work in MicroPython
The following commands cannot be performed with the atcmd function.
Pending commands:

n LA - DNS lookup
n DB - RSSI
n SQ - RSRQ
n SW - RSRP
n IS - IO sampling
n !R - Cell module reset
n SD - Shutdown
n FS - Filesystem access
n AS - Active Scan
n PG - Ping

class XBee on XBee Cellular Modem
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

Use this function to output information about the XBee device that is hosting MicroPython.

import xbee
x = xbee.XBee() #Create an XBee object
print(x.atcmd('MY'))

Constructors
Use this class to create an XBee Cellular object for the XBee Cellular Modem that is hosting
MicroPython.

class xbee.XBee()

Methods
Use this method to send an AT command to the XBee Cellular Modem.

x.atcmd(cmd[, value])

<cmd>
The <cmd> parameter is a two-character string that represents the command.
For detailed information about the AT commands that you can use with the XBee device, see the AT
commands section in the appropriate user guide.
<value>
The <value> parameter is optional.

https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm

XBee module XBee MicroPython module on the XBee 3 RF Modules

Digi MicroPython Programming Guide 117

n If the <value> parameter is NOT set: The function executes the AT command and, depending on
the command, returns the result as either a string, bytes object, an integer, or None. Some
commands simply return a value; other AT commands, such as special commands and
execution commands, change the behavior of the XBee device. For example, FR resets the
device.

n If the <value> parameter is set: You can specify a value in a string, btyearray, or integer format.
The function passes the value to set the AT command.

For examples of how to use the AT commands with the XBee device, see XBee device examples.

XBee MicroPython module on the XBee 3 RF Modules
Note This section only applies to the XBee 3 Zigbee RF Module, XBee 3 802.15.4 RF Module, and XBee
3 DigiMesh RF Modules. See Which features apply to my device? for a list of the supported features.

Functions
The xbee MicroPython module supports the following functions:

atcmd()
Use this function to set or query an AT command on the XBee device.

xbee.atcmd(cmd[, value])

<cmd>
The <cmd> parameter is a two-character string that represents the command.
For detailed information about the AT commands that you can use with the XBee device, see the AT
commands section in the appropriate user guide.

<value>
The <value> parameter is optional.

n If the <value> parameter is not set: The function executes the AT command and, depending on
the command, returns the result as either a string, bytes object, an integer, or None. Some
commands simply return a value; other AT commands, such as special commands and
execution commands, change the behavior of the XBee device. For example, FR resets the
device.

n If the <value> parameter is set: You can specify a value in a string, btyearray, or integer format.
The function passes the value to set the AT command.

For examples of how to use the AT commands with the XBee device, see XBee device examples.

discover()
Use this function to perform a network discovery, which is equivalent to issuing the ND command.
The timeout for the discovery is determined by the N? command.

https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm

XBee module XBee MicroPython module on the XBee 3 RF Modules

Digi MicroPython Programming Guide 118

xbee.discover()

This function accepts no parameters, and returns an iterator yielding a dictionary for each discovered
node.

Note xbee.discover() returns immediately, but querying the resulting iterator will block execution
until a response is available or the discovery times out (as determined by N?). See the xbee.discover
() examples for more information.

Discovered node dictionaries can contain the following fields:

n sender_nwk: 16-bit network address
n sender_eui64: 8-byte bytes object with EUI-64 address
n parent_nwk: set to 0xFFFE on the coordinator and routers, otherwise the network address of

the end device's parent
n node_id: the device's NI value (a string of up to 20 characters, also referred to as Node

Identification)
n node_type: Value of 0, 1 or 2 for coordinator, router or end device.
n device_type: the device's 32-bit DD value (also referred to as Digi Device Type)
n rssi: RSSI of the node discovery request packet received by the sending node

Note Some of these fields may be excluded depending on what protocol the XBee device is running.

Example output on a Zigbee network:

{
'rssi': -20,
'node_id': ' ',
'device_type': 1179648,
'parent_nwk': 65534,
'sender_nwk': 41334,
'sender_eui64': b'\x00\x13\xa2\x00\x92w%`',
'node_type': 1

}

Example output on a 802.15.4 network:

{
'rssi': -20,

'node_id': ' ',
'sender_nwk': 41334,
'sender_eui64': b'\x00\x13\xa2\x00\x92w%`',
}

Example output on a DigiMesh network:

{
'rssi': -20,
'node_id': ' ',
'device_type': 1179648,
'sender_eui64': b'\x00\x13\xa2\x00\x92w%`',
'node_type': 1

}

XBee module XBee MicroPython module on the XBee 3 RF Modules

Digi MicroPython Programming Guide 119

receive()
The XBee device has a MicroPython receive queue that stores up to four incoming packets.
If the device is operating in MicroPython REPL (AP is set to 4) and the receive queue is full, it silently
rejects any additional incoming packets:

n On the XBee 3 Zigbee device, the sending node receives a transmission status of 0x24 (Address
not found).

n On the XBee 3 DigiMesh or XBee 3 802.15.4 device, the sending node receives a transmission
status of 0x00 (Success) in this case.

Note DigiMesh does not acknowledge packets at the application level, so if a packet is delivered to
the device while the receive queue is full the sender still sees it as a successful transmission. If you
need to verify that MicroPython has received data, you need to send an acknowledgment using
xbee.transmit() and look for that acknowledgment on the sender.

Note We recommend calling the receive() function in a loop so no data is lost. On devices where
there is a high volume of network traffic, there could be data lost if the messages are not pulled from
the queue fast enough.

receive() is a non-blocking method.
Use this function to return a single entry from the receive queue. The format and fields are equivalent
to receiving a 0x91 Explicit Rx API frame.

xbee.receive()

This function accepts no parameters, and returns either None when there is no packet waiting, or a
dictionary containing the following entries:

n sender_nwk: the 16-bit network address of the sending node. This field is absent on DigiMesh
devices, as devices on a DigiMesh network do not have 16 bit addresses.

n sender_eui64: the 64-bit address (as a bytearray) of the sending node. If no 64-bit address is
present, such as when the sending device on an 802.15.4 network is using 16 bit addressing,
this field will have the value None.

n source_ep: the source endpoint as an integer
n dest_ep: the destination endpoint as an integer
n cluster: the cluster id as an integer
n profile: the profile id as an integer
n broadcast: either True or False depending on whether the frame was broadcast or unicast
n payload: a bytes object of the payload (intentional selection of bytes object over string since

the payload can contain binary data)

Example output:

{
'cluster': 17,
'dest_ep': 232,
'broadcast': False,
'source_ep': 232,
'payload': b'Sample payload',
'profile': 49413,

XBee module XBee MicroPython module on the XBee 3 RF Modules

Digi MicroPython Programming Guide 120

'sender_nwk': 63941,
'sender_eui64': b'\x00\x13\xa2\x00\x92w%`'

}

receive_callback(rx_callback)
Register a callback function that will be called whenever an RF transmission is received by the device.
The callback function should take a single parameter, a dictionary in the same format used by the
receive() method. Calling receive_callback(None) de-registers the receive callback if one is
registered.

Note The receive() method cannot be called while a callback is registered. Attempting to do so raises
an exception.

transmit()
Use this function to transmit a packet to a specified destination address. This function either succeeds
and returns None, or raises an exception. Here is a partial list of the exceptions to expect:

n TypeError: invalid type for either <dest> or <payload>
n ValueError: Payload is too long. Maximum length depends on whether you are making a

unicast or broadcast transmission with or without encryption. Note that application-level
encryption is not available in current builds.

n OSError(ENOTCONN): Device is not joined to a network (AI returns a non-zero value)
n OSError(EAGAIN): temporary issue preventing sending, for example, insufficient buffers,

packet already queued for target
n OSError(EIO): general error message for unable to send

xbee.transmit(dest, payload[, source_ep][, dest_ep][, cluster][, profile][,
bcast_radius][, tx_options])

<dest>
The <dest> parameter is the destination address of the message, and accepts any of the following:

n an integer for 16-bit addressing (only available on the XBee 3 Zigbee and 802.15.4)
n an 8-byte bytes object for 64-bit addressing
n the constant xbee.ADDR_BROADCAST to indicate a broadcast destination
n the constant xbee.ADDR_COORDINATOR to indicate the coordinator (only available on the

XBee 3 Zigbee and 802.15.4)

There are multiple ways to create the 8-byte bytes object for 64-bit addressing:

n as a bytestring: b'\x00\x13\xa2\x00\x41\x74\x07\xa6'
n using the bytes() constructor with a list of decimal values: bytes([0, 19, 162, 0, 65, 116, 7,

166])
n using the bytes() constructor with a tuple of hex values: bytes((0x00, 0x13, 0xa2, 0x00, 0x41,

0x74, 0x07, 0xa6))

Note You can also pass a list of hex values or a tuple of decimal values to bytes().

XBee module XBee MicroPython module on the XBee 3 RF Modules

Digi MicroPython Programming Guide 121

<payload>
The <payload> parameter should be a string (for example, 'Hello World!') or bytes object (useful for
sending binary data).

<source_ep>
Optional 8-bit Source Endpoint for the transmission, defaulting to xbee.ENDPOINT_DIGI_DATA.

<dest_ep>
Optional 8-bit Destination Endpoint for the transmission, defaulting to xbee.ENDPOINT_DIGI_DATA.

<cluster>
Optional 16-bit Cluster ID for the transmission, defaulting to xbee.CLUSTER_DIGI_SERIAL_DATA.

<profile>
Optional 16-bit Cluster ID for the transmission, defaulting to xbee.PROFILE_DIGI_XBEE.

<bcast_radius>
Optional 8-bit value to set the maximum number of hops a broadcast transmission can traverse.
Default is 0.

<tx_options>
Optional 8-bit bitfield that configures advanced transmission options. See the protocol-specific user
guide for TX Options usage.

Note All of the optional parameters are keyword-only, and require the following firmware versions or
higher:
* XBee 3 Zigbee: version 1007
* XBee 3 802.15.4: version 2004 - Endpoints, cluster ID, profile ID, and broadcast radius can be used on
802.15.4 but are effectively non-functional.
* XBee 3 DigiMesh 2.4: version 3003

modem_status
The modem_status module provides ways to handle modem status messages within MicroPython. All
modem statuses are reported to MicroPython with the exception of hardware reset/watchdog reset.
See the documentation for the Modem Status (0x8A) API frame of the device you use for a list of
possible status values.

Note Hardware/watchdog reset modem statuses are not sent to MicroPython. Use machine.reset_
cause() instead.

Note Modem statuses sent to MicroPython are stored on a queue with limited space. If modem
statuses are to be handled receive() should be called frequently or a callback should be registered
soon after the device boots to avoid missing data.

modem_status.receive()
If a modem status is available, the receive() function returns its status code. If no modem status is
available, the function returns None.

XBee module XBee MicroPython module on the XBee 3 RF Modules

Digi MicroPython Programming Guide 122

The following code polls for modem statuses and prints them as they are received:

import xbee

while True:
status = xbee.modem_status.receive()
if status is not None:

print("Received status: {:02X}".format(status))

modem_status.callback(my_callback)
Registers a callback that will be called whenever a modem status is received. The callback function
must take one parameter, an integer containing the status code.
The following code registers a callback to print modem statuses when they are received:

import xbee

def status_cb(status):
print("Received status: {:02X}".format(status))

xbee.modem_status.callback(status_cb)

digi.cloud module

Note This section only applies to the XBee Cellular Modem with firmware version ending in *11 or
newer. See Which features apply to my device? for a list of the supported features.

The digi.cloud module provides interaction with Digi Remote Manager.

Create and upload data points 124
class DataPoints 124
Receive a Data Service Device Request 127
class device_request 127
Use the API Explorer to send Device Requests 128
digi.cloud.Console() object 129

Digi MicroPython Programming Guide 123

digi.cloud module Create and upload data points

Digi MicroPython Programming Guide 124

Create and upload data points
You can use the DataPoints class to create and upload new data streams and data points to your Digi
Remote Manager account. To learn more about data streams, see the Digi Remote Manager User
Guide.
This example creates a single data point and uploads it to Digi Remote Manager.

from digi import cloud
data = cloud.DataPoints()
data.add("example-stream", 123)
data.send()

You can add multiple data points to a stream, and/or uploads points to multiple streams, in a single
request.

data = cloud.DataPoints()
data.add("stream1", 1234)
data.add("stream1", 2345)
data.add("stream2", "value")
data.send()

If you prefer, you can also use the digi.cloud module as follows:

import digi

data = digi.cloud.DataPoints()

class DataPoints

Constructor
Use the constructor to create a DataPoints object.

cloud.DataPoints([transport])

Optional parameter
n transport: The transport method used to deliver the data points. Acceptable values are

digi.cloud.TRANSPORT_TCP (the default transport) and digi.cloud.TRANSPORT_UDP.

If the Digi Remote Manager feature is disabled (bit 0 of ATDO is cleared), this will raise a TypeError
indicating that the Remote Manager feature is disabled.
If there are not enough resources available in the system to create the DataPoints object, or your
application has created too many DataPoints objects without allowing some to be garbage-collected,
an OSError will be raised with an error code of ENOBUFS.

Note DataPoints objects using the digi.cloud.TRANSPORT_UDP transport are limited to one data
point per DataPoints container.

Add a data point method
This method creates a new data point entry inside the DataPoints container.

https://www.digi.com/resources/documentation/digidocs/90001436-13/concepts/c_data_streams.htm
https://www.digi.com/resources/documentation/digidocs/90001436-13/concepts/c_data_streams.htm

digi.cloud module class DataPoints

Digi MicroPython Programming Guide 125

data.add(stream_name, value[, units][, quality][, description][, location])

Required parameters

n stream_name: Specifies the data stream name to which this data point is added.
n value: The value to assign to this data point. Currently the only supported types are integer

and string.

Optional keyword parameters

n units: A string, specifying the units associated with data on this data stream. If this value is
specified, it will overwrite the units field of the data stream in Digi Remote Manager. Individual
data points do not have units associated with them.

n quality: A user-defined 32-bit integer value indicating the quality of the data in the data point.
n description: A string, specifying a description of the data point.
n location: A tuple of three floating point numbers, indicating the geo-location information of

the data point. Geo-location is represented as (latitude in degrees, longitude in degrees,
elevation in meters).

Return value
None.
If any of the parameters values are of an inappropriate type (such as an integer for stream name), a
TypeError or ValueError is raised indicating the problem.
This method will raise an OSError with the error code ENOSPC when there is not enough room to add
the data point to the upload buffer. The amount of space each data point consumes in the buffer
varies based on the length of the string value and how many of the optional parameters are specified.

Note DataPoints objects that use the TRANSPORT_UDP transport are limited to one data point per
DataPoints container.

Upload data to Digi Remote Manager method
This method performs a data point upload of all data that has been created using the add() method.
This method takes no parameters, and blocks until the data has been uploaded or the specified
timeout expires.

data.send([timeout=30])

Optional keyword parameters

n timeout: An integer, number of seconds that the send call is allowed to block. If nonzero and
this timeout elapsed without the data being sent, an OSError ETIMEDOUT is raised, but the
object is still considered to be "locked" and new data points cannot be added. See Check the
status of a DataPoints object.

Return value
None.

digi.cloud module class DataPoints

Digi MicroPython Programming Guide 126

If the Digi Remote Manager feature is disabled (bit 0 of ATDO is cleared), this raises a TypeError
indicating that the Remote Manager feature is disabled.
If there is no data to be uploaded, an OSError EINVAL is raised.
If a blocking upload fails (due to a network issue or command timeout), an OSError is raised.
If the "Sleepy Digi Remote Manager" feature is being used (ATMO bit 0 is cleared) and the transport
selected is TRANSPORT_TCP, this method causes a temporary TCP/SSL connection to be created.

Check the status of a DataPoints object
This method returns a value indicating the status of the most recent send call on a DataPoints object.
This method takes no parameters.

data.status()

Return value

n digi.cloud.IDLE: send has never been called.
n digi.cloud.SENDING: The most recent send call is still being processed.
n digi.cloud.SUCCESS: The most recent send call has succeeded.
n Any other value is a negative uerrno value for the most recent send call. For example,

uerrno.EIO.

The life-cycle of a DataPoints object
DataPoints objects are single use, meaning: after calling send() on a DataPoints object, the data inside
has been erased and the object will no longer be usable beyond the status() call. This means you will
need to call DataPoints(), instantiating a new DataPoints object, each time you have data points to
upload.
If calling send() on a DataPoints object raises OSError with error code ETIMEDOUT, then for
TRANSPORT_TCP data points, the XBee device will hold on to the data and attempt to retry the send
internally. The status of the send can be checked with the status() call. See Check the status of a
DataPoints object. For TRANSPORT_UDP, after a ETIMEDOUT, the send is not retried. You can know
that the send has finished by calling status() and seeing a value other than digi.cloud.SENDING.

Delete a DataPoints object
To free up the resources held by the DataPoints object (if you are seeing OSError exceptions with
ENOBUFS), ensure that your MicroPython application has no references to the object anymore so that
it can be garbage-collected. Usually you can use the del statement to do this.

data.send()
success
del data

The del statement is not necessary if the DataPoints object goes out of scope. One example of this is
when the DataPoints object was created inside of a function:

def upload_data(value):
data = cloud.DataPoints()
data.add("my_stream", value)
data.send()

digi.cloud module Receive a Data Service Device Request

Digi MicroPython Programming Guide 127

data automatically gets deleted here

upload_data(123)

Note that the DataPoints object will not be garbage-collected if another object holds a reference to
the DataPoints object. Placing the DataPoints object inside a container such as a list, tuple, or
dictionary will cause this.

data = cloud.DataPoints()
my_list = []
my_list.append(data) # my_list now keeps `data` alive
my_dict = {"data": data} # my_dict now keeps `data` alive
my_tuple = (data, 123) # same here

Receive a Data Service Device Request
Using the device_request_receive(), poll for device requests from your Digi Remote Manager
account. You can learn more about device requests in the Digi Remote Manager Programmer Guide
under data_service.
This example is a typical use case. It receives a device request and forms a response to send back to
Digi Remote Manager.

import time
from digi import cloud

while 1:
request = cloud.device_request_receive()
if request is not None:

body = request.read()

Process the request
data = b"my data to send back"

request.write(data)
request.close()

time.sleep(5)

If you prefer, you can also use the digi.cloud module as follows:

import digi

request = digi.cloud.device_request_receive()

class device_request
This class is returned from digi.cloud.device_request_receive().

Note If there is no pending request, device_request_receive() returns None.

The device_request class is a file-like object containing the payload of the request that can be read.
A response can be sent back to Digi Remote Manager using the write method.

https://www.digi.com/resources/documentation/Digidocs/90001437-13/default.htm
https://www.digi.com/resources/documentation/Digidocs/90001437-13/default.htm#reference/r_sci_available_operators.htm

digi.cloud module Use the API Explorer to send Device Requests

Digi MicroPython Programming Guide 128

Use the read(size=-1) method
This method reads the payload received from Digi Remote Manager.
Read the payload of the request, returns up to size bytes.
If the argument is omitted, None, or negative, data is read and returned until EOF is reached. An
empty bytes object is returned if the stream is already at EOF. This call can block.

request.read(size=-1)

Use the readinto(b) method
This method reads the payload received from Digi Remote Manager.
Read the payload of the request into a pre-allocated, bytearray() object b, and return the number of
bytes read.
This call, like read() is a blocking call.

request.readinto(b)

Use the write(b) method
This method will allow a response to be written back to Digi Remote Manager.
Write the given bytes() or bytearray() object, b, and return the number of bytes written (always equal
to the length of b in bytes).
After finishing writing a response, close() should be called to complete the transaction.

Note All data from the request should have been read before issuing a write.

request.write(b)

Use the close() method
This method is required to finish the device request transaction.
Finish the device request transaction, sending a response to Digi Remote Manager.

Note The request should not be written to or read after a close call.

request.close()

Use the API Explorer to send Device Requests
You can send a Device Request via Web Services within Digi Remote Manager. Follow these steps:

1. Log in to your Remote Manager account (https://remotemanager.digi.com).
2. Go to Documentation > API Explorer.
3. Select Examples > SCI > Data Service > Send Request. Remote Manager automatically creates

the necessary code.
4. Replace the device id value with the ID of your device.

https://remotemanager.digi.com/

digi.cloud module digi.cloud.Console() object

Digi MicroPython Programming Guide 129

5. Replace the target_name value with micropython and enter the data for the device request
between the <device_request> XML tags.

<sci_request version="1.0">
<data_service>
<targets>

<device id="00000000-00000000-00000000-00000000"/>
</targets>
<requests>

<device_request target_name="micropython">
This is a Device Request sample

</device_request>
</requests>

</data_service>
</sci_request>

6. Click Send.

digi.cloud.Console() object
Note This applies to XBee 3 Cellular Modem modules in firmware x18 and newer.

Class providing access to the Digi Remote Manager console interface. To use the Digi Remote Manager
console you must establish a TCP session to Digi Remote Manager.

isconnected() method
Returns a boolean indicating whether a console session is attached from Digi Remote Manager.

read(size) method
Reads from the Digi Remote Manager console.
Reads up to size bytes from the object and returns them. As a convenience, if size is unspecified or -1,
all bytes until end-of-file (EOF) are returned.
Returns the data read, or None if no data is available.

readinto(buf) method
Reads from the Digi Remote Manager console into a buffer object.
Reads bytes into a pre-allocated writable bytes-like object and returns the number of bytes read or
None if no data is available. This call is non-blocking.

write(buf) method
Write to the Digi Remote Manager console.
Send the data in buf to a connected Digi Remote Manager console session. If no console is currently
attached the data is discarded. Returns the number of bytes written.

close() method
Close the session tracked by the current Console() object.

The ussl module

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

ussl on the XBee Cellular Modem 131
Syntax 131

Digi MicroPython Programming Guide 130

The ussl module ussl on the XBee Cellular Modem

Digi MicroPython Programming Guide 131

ussl on the XBee Cellular Modem
The XBee Cellular Modem's implementation of MicroPython provides a stripped-down version of
Python3's ssl module using the name ussl. It consists of a single method, wrap_socket(), which you
can use to authenticate servers—ensuring they have a certificate signed by given CA—or provide client
authentication via a client certificate and key to the server. Some important differences from wrap_
socket() on Python3 are:

n You can only wrap a socket created with protocol IPPROTO_SEC. Python3 uses IPPROTO_TCP.
n You can only wrap a socket before calling the connect() method. Python3 allows for opening a

socket, performing unencrypted communications, and then upgrading the connection to use
TLS, for example, via the STARTTLS command supported in some protocols.

n In Python3, wrap_socket() creates a new ssl.SSLSocket object and the original socket.socket
remains intact. MicroPython on the XBee Cellular Modem converts the original socket.socket
to a ussl.SSLSocket with the same methods.

n Python3 allows for including the key with the device's certificate in a single file for the certfile
keyword parameter, but MicroPython on the XBee Cellular Modem requires separate files for
the certificate and key.

n If specifying a device certificate, you must also provide a ca_certs file.

Syntax

Usage
ussl.wrap_socket(sock, keyfile=None, certfile=None, ca_certs=None, server_side=False, server_
hostname=None)

n sock: Socket object created with IPPROTO_SEC and not already wrapped.
n keyfile: Name of a file containing the private key for certfile (also stored as a Base64 PEM file).
n certfile: Name of a file containing this device's public X.509 certificate as a Base64 PEM file.

When specifying certfile, you must also specify keyfile and ca_certs.
n ca_certs: Name of a file containing a single public X.509 certificate of the trusted certificate

authority (CA) for the remote host. Connections with remote devices only succeed if they have
a certificate signed by the CA listed in ca_certs. Unlike Python3, which supports multiple
certificates in ca_certs, MicroPython on the XBee Cellular Modem only supports a single
certificate in this file. In order to authenticate a server not participating in a PKI (using CAs) the
server must present a self-signed certificate. That certificate can be used in the ca_certs field
to authenticate that single server.

n server_side: currently ignored.
n server_hostname: reserved for future support of Server Name Indication (SNI).

wrap_socket() returns the wrapped socket object as a SSLSocket object. Filenames are relative to
MicroPython's current working directory, which defaults to /flash and changes via the uos.chdir()
method. Use an absolute path like /flash/cert/server.pem to ignore the current working directory
when resolving the filename.

digi.gnss module

This section only applies to the XBee 3 Global LTE-M/NB-IoT. See Which features apply to my device?
for a list of the supported features.
The digi.gnss module provides an interface to use the modem's Global Navigation Satellite System
(GNSS) capabilities.

GNSS module methods 133
GNSS examples 134

Digi MicroPython Programming Guide 132

digi.gnss module GNSS module methods

Digi MicroPython Programming Guide 133

GNSS module methods

single_acquisition(callback, timeout=60)
Request the GNSS location data to be acquired. This returns that location data using the location_cb
callback registered in the GNSS class constructor.
When this times out the callback is called with None.

Required parameter
callback
A user callback that will be called whenever new location data is requested. See the class methods
that follow for details on requesting location data.
The callback function must take one parameter:
A dictionary with the following keys:

n longitude: The longitude in decimal degrees.
n latitude: The latitude in decimal degrees.
n altitude: The altitude in meters.
n satellites: The number of satellites used to get this fix.
n timestamp: Seconds since 2000.

Note When gathering non-cached location data there will be interruptions to the cellular network
because the radio is shared.

Optional parameter
timeout
The amount of time to try to acquire a location before giving up.
If the timeout is zero, this will callback the cached location value or None if a cached value is
notavailable.

Return value
This always returns None.
If there is already a request active, an OSError EBUSY is raised.

raw_mode(callback)
Request access to NMEA 0183 data stream.
When a callback has been provided, the callback will be called periodically with NMEA 0183 sentences
containing location information.

CAUTION! Access to GNSS disables access to the cellular network. The MicroPython
application needs to enable and disable raw mode as necessary.

Parameters
callback

digi.gnss module GNSS examples

Digi MicroPython Programming Guide 134

Callback provided by the user, None to disable raw mode. The callback function should accept a
single bytes-type parameter which provides full NMEA 0183 sentences.

Errors

n OSError

EBUSY — Error when GNSS is already in use for other functionality —one_shot, and so forth.

GNSS examples
We have provided example applications which demonstrate how to use the GNSS module from
MicroPython. You can read these examples on GitHub:

n https://github.com/digidotcom/xbee-micropython/tree/master/samples/gnss_raw
n https://github.com/digidotcom/xbee-micropython/tree/master/samples/gnss_single

This example shows a typical acquisition of location data:

from digi import gnss

def my_location_callback(data):
if data is None:

print("The attempt to get a location timed out")
else:

print("Got a location: {}".format(data))

gnss.single_acquisition(my_location_callback)

https://github.com/digidotcom/xbee-micropython/tree/master/samples/gnss_raw
https://github.com/digidotcom/xbee-micropython/tree/master/samples/gnss_single

Terminal redirection

dupterm(stream_obj, index=0) 136

Digi MicroPython Programming Guide 135

Terminal redirection dupterm(stream_obj, index=0)

Digi MicroPython Programming Guide 136

dupterm(stream_obj, index=0)
Note This applies to XBee 3 Cellular Modem modules in firmware x18 and newer.

Switch the MicroPython terminal—the REPL—on the given stream-like object.
The stream_object argument must be a native stream object, or derive from uio.IOBase and
implement the readinto() and write() methods. The stream should be in non-blocking mode and
readinto() should return None if there is no data available for reading.
When the XBee AP parameter is not 4—MicroPython—all terminal output is directed to this stream,
and any input that is available on the stream is passed on to the terminal input.
The index parameter is present for compatibility up stream, but only slot zero is provided.
If None is passed as the stream_object then duplication is cancelled on the slot given by index.
The function returns the previous stream-like object in the given slot.

Use AWS IoT from MicroPython

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

You can use MicroPython to connect an XBee Cellular Modem to the Amazon Web Services (AWS) IoT
cloud.

Add an XBee Cellular Modem as an AWS IoT device 138
Create a policy for access control 138
Create a Thing 139
Install the certificates 141
Test the connection 142
Publish to a topic 144
Confirm published data 145
Subscribe to updates from AWS 145

Digi MicroPython Programming Guide 137

Use AWS IoT from MicroPython Add an XBee Cellular Modem as an AWS IoT device

Digi MicroPython Programming Guide 138

Add an XBee Cellular Modem as an AWS IoT device
First, log in to AWS. To do this:

1. If you do not already have one, sign up for a Basic AWS account with twelve months of free tier
access.

2. You can add devices and generate certificates, but they might not be able to connect until you
receive an email from Amazon confirming that your AWS account is ready.

Create a policy for access control
Once you have an AWS account, log into the AWS IoT Console.
Use the following policy as a starting point for testing. It allows any device with a valid certificate to
connect and perform various actions, which you will use for testing your client certificate via HTTPS.
In the left navigation pane, choose Secure, and then Policies. On the You don't have a policy yet
page, choose Create a policy; see Create an AWS IoT Policy.
Once there, you can create a policy and enter advanced mode to paste in the following open policy.

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",
"Action": [
"iot:Connect",
"iot:GetThingShadow",
"iot:Publish",
"iot:Receive",
"iot:Subscribe"

],
"Resource": [
"*"

]
}

]
}

Once you have things working, you can switch to a more restrictive policy that limits a Thing to
connecting with its ThingName as its ClientId, and publishing and subscribing only to topics under its
type/name in the topic hierarchy.
The client ARNs follow this format:
arn:aws:iot:your-region:your-aws-account:client/<my-client-id>

Note Replace the region and account numbers in the following sample code with your own
information.

https://portal.aws.amazon.com/billing/signup#/start
https://console.aws.amazon.com/iot/home
https://docs.aws.amazon.com/iot/latest/developerguide/iot-moisture-policy.html

Use AWS IoT from MicroPython Create a Thing

Digi MicroPython Programming Guide 139

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",
"Action": "iot:Connect",
"Resource": "*",
"Condition": {
"Bool": {
"iot:Connection.Thing.IsAttached": [
"true"

]
},
"StringEquals": {
"iot:ClientId": "${iot:Connection.Thing.ThingName}"

}
}

},
{

"Effect": "Allow",
"Action": [
"iot:Publish",
"iot:Receive"

],
"Resource": [
"arn:aws:iot:us-east-

1:123456789012:topic/${iot:Connection.Thing.ThingTypeName}/${iot:Connectio
n.Thing.ThingName}",

"arn:aws:iot:us-east-
1:123456789012:topic/${iot:Connection.Thing.ThingTypeName}/${iot:Connectio
n.Thing.ThingName}/*"

]
},
{

"Effect": "Allow",
"Action": [
"iot:Subscribe"

],
"Resource": [
"arn:aws:iot:us-east-

1:123456789012:topicfilter/${iot:Connection.Thing.ThingTypeName}/${iot:Con
nection.Thing.ThingName}",

"arn:aws:iot:us-east-
1:123456789012:topicfilter/${iot:Connection.Thing.ThingTypeName}/${iot:Con
nection.Thing.ThingName}/*"

]
}

]
}

Create a Thing
From the AWS services page, choose IoT Core.

Use AWS IoT from MicroPython Create a Thing

Digi MicroPython Programming Guide 140

In AWS IoT:

1. Click Manage > Things.
2. Click the CREATE button.
3. On the page that says You don't have any things yet, choose Register a thing.
4. On the Creating AWS IoT things page, choose Create a single thing.
5. In the Name field, give a unique name to your device.
6. In the Thing Type field, choose Create a type.
7. Type XBee_Cellular in the Name field.
8. In the Attribute key field, type IMEI. You can use this IMEI attribute key to identify a specific

device if you add multiple devices to the AWS account. Use the ATIM command to get the XBee
device's IMEI.

9. Choose Create thing type.
10. Choose Next to add your device to the registry.
11. Choose Create certificate to use One-click certificate creation to generate a certificate, public

key and private key for your device.
12. Download the certificate, public key and private key for this specific device. You will not use

the public key file, but this is your only opportunity to download it—you can generate new
certificates for your device if you somehow misplace them. You also need the root CA for AWS
IoT, this file should be identical for all devices you connect to your account.

13. Once you have downloaded all of the files, choose Attach a Policy to attach the policy created
previously. Note that Amazon now recommends using Amazon Trust Service endpoints and
recommends using intermediate Root CAs. Some devices such as the XBee 3 Cellular LTE-M
Global Smart Modem only work with the originating end of chain Root CA, so use that one
instead. Specifically, for ATS endpoints1 we recommend using the Starfield Services Root
Certificate from amazontrust.com/repository/.

14. In the left navigation pane, choose Manage, and then choose Certificates. If the certificate
says Inactive on its row, click Activate in the drop-down menu on the right side of the
certificate's row to activate it.

1ATS endpoints include -ats as part of the hostname. ATS endpoint <host_prefix>-ats.iot.<aws_
region>.amazonaws.com where <host_prefix>-ats is the full hostname and <aws_region> is the region of your
endpoint. Legacy endpoints omit the -ats postfix string so the endpoint becomes <host_prefix>.iot.<aws_
region>.amazonaws.com.

https://www.amazontrust.com/repository/

Use AWS IoT from MicroPython Install the certificates

Digi MicroPython Programming Guide 141

Install the certificates
Place the downloaded certificates into a folder with a name to match your Thing's name or the 10-
character ID used in the filenames that correspond to the start of the certificate's ID shown in the AWS
IoT console.
To simplify file management on the XBee device and to allow re-use of the same code on multiple
devices, give the files shorter names.

Original name New name

9770fec281-certificate.pem.crt aws.crt

9770fec281-private.pem.key aws.key

9770fec281-public.pem.key (unused)

SFSRootCAG2.pem aws.ca

Use XCTU or ATFS commands in a terminal emulator to upload the three files to the cert/ directory on
the XBee device. For security, use ATFS XPUT to upload the aws.key as a secure file. We recommend
using the Starfield Services Root Certificate from amazontrust.com/repository/ as the intermediate CA
certificates provided by Amazon do not work on some cellular modules. Note the Verisign certificate is
now considered legacy by Amazon.
Many of the intermediate root certificate authorities on the AWS repository
(amazontrust.com/repository/) do not work with the TLS implementation on the XBee Cellular
Modems. To ensure that you have success, you need to use a specifc Starfield Technologies Root
Certificate Authority depending on which XBee you are using.
If you are using one of the CAT 1 XBee Cellular devices, use the Starfield Class 2 Certification
Authority Root Certificate instead of the ones recommended by Amazon. If you are using the LTE-
M/NB-IoT or 3G devices, you need to use the Starfield Services Root Certificate Authority
certificate. Note that the Amazon certificates are in the trust chain of these two certificates. It has the
following SHA-256 thumbprint and can be obtained from Starfield Technologies.

XBee 3
Cellular
Cat 1
AT&T

Starfield
Class 2
Certificatio
n Authority
Root
Certificate

sf-
class2-
root.crt
(PEM)

1465fa205397b876faa6f0a9958e5590e40fcc7faa4fb7c2c8677521fb
5fb658

XBee 3
Cellular
Cat 1
AT&T

XBee
Cellular
Cat 1
Verizon

LTE-
M/3G
products

Starfield
Services
Root
Certificate

PEM 2b071c59a0a0ae76b0eadb2bad23bad4580b69c3601b630c2eaf061
3afa83f92

https://www.amazontrust.com/repository/
https://www.amazontrust.com/repository/
https://www.starfieldtech.com/
https://ssl-ccp.secureserver.net/repository/sf-class2-root.crt
https://ssl-ccp.secureserver.net/repository/sf-class2-root.crt
https://ssl-ccp.secureserver.net/repository/sf-class2-root.crt
https://ssl-ccp.secureserver.net/repository/sf-class2-root.crt

Use AWS IoT from MicroPython Test the connection

Digi MicroPython Programming Guide 142

Authority -
G2

Test the connection
Update the following samples with settings for your AWS account and the Thing you are testing with,
and use it to test your certificates. All samples use the same settings so you can easily paste your
configuration to the top of each sample. You can identify the elements of the AWS endpoint (such as
host, region, account) and the elements of this Thing (such as Thing type, Thing name).
You can first test with the following code on your computer with Python3 (run from the command line
python aws_https_pc.py):

Test code to run from Python3 on a PC

AWS IoT Account for this Thing
host = b'ABCDEFG1234567-ats'
region = b'us-east-1'
aws_endpoint = b'%s.iot.%s.amazonaws.com' % (host, region)

This Thing's type and name
thing_type = b'XBee_Cellular'
thing_name = b'IMEI_63890'

import socket, ssl

s = socket.socket()
w = ssl.wrap_socket(s,

keyfile='cert/aws.key',
certfile='cert/aws.crt',
ca_certs='cert/aws.ca')

w.connect((aws_endpoint, 8443))
w.write(b'GET /things/%s/shadow HTTP/1.0\r\nHost: %s\r\n\r\n' % (thing_
name, aws_endpoint))
print(str(w.read(1024), 'utf-8'))
w.close()

You should see sample output something like this on you computer:

HTTP/1.1 200 OK
content-type: application/json
content-length: 61
date: Thu, 05 Jul 2018 01:24:15 GMT
x-amzn-RequestId: 37e93081-06f5-0bc2-1384-5a129eb0ac30
connection: keep-alive

{"state":{},"metadata":{},"version":1,"timestamp":1530753855}

Once you confirm that the certificates and policy on your AWS account are correct, you can test on the
XBee device with the following code. It configures the socket as non-blocking in order to return any
amount of data read instead of blocking until receiving the full byte count (for rexample, 1024 below).

Note It is easiest to use paste mode by pressing CTRL-E from the REPL.

AWS IoT Account for this Thing
host = b'ABCDEFG1234567'
region = b'us-east-1'

Use AWS IoT from MicroPython Test the connection

Digi MicroPython Programming Guide 143

aws_endpoint = b'%s.iot.%s.amazonaws.com' % (host, region)

This Thing's type and name
thing_type = b'XBee_Cellular'
thing_name = b'IMEI_63890'

import usocket, ussl, uerrno, time

s = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM, usocket.IPPROTO_
SEC)
s.setblocking(False)
w = ussl.wrap_socket(s,

keyfile='cert/aws.key',
certfile='cert/aws.crt',
ca_certs='cert/aws.ca')

while True:
try:

w.connect((aws_endpoint, 8443))
break # connection complete

except OSError as e:
Nonblocking socket will raise OSError EINPROGRESS
until the connection is complete or an error occurs.
if e.args[0] == uerrno.EINPROGRESS:

Sleep for a moment before checking connection status again.
time.sleep_ms(100)

else:
Some other error (such as ETIMEDOUT) occurred.
raise

w.write(b'GET /things/%s/shadow HTTP/1.0\r\nHost: %s\r\n\r\n' % (thing_
name, aws_endpoint))

while True:
data = w.read(1024)
if data:

print(str(data, 'utf-8'))
break

w.close()

The XBee device includes additional blank lines because the HTTP response uses CRLF for line
endings, and starts with the return value of the w.write() call (in this case, 92 bytes written):

92
HTTP/1.1 200 OK

content-type: application/json

content-length: 61

date: Thu, 05 Jul 2018 19:28:03 GMT

x-amzn-RequestId: 0744caf6-2162-1d4f-c4f9-67a2d7ff2ce9

connection: keep-alive

Use AWS IoT from MicroPython Publish to a topic

Digi MicroPython Programming Guide 144

{"state":{},"metadata":{},"version":1,"timestamp":1530818883}

Publish to a topic
You can use the umqtt.simple module to publish data to a topic. This code demonstrates publishing
to a topic based on the Thing type and name.

"""
Copyright (c) 2018, Digi International, Inc.
Sample code released under MIT License.

Instructions:

- Ensure that the umqtt/simple.py module is in the /flash/lib directory
on the XBee Filesystem

- Ensure that the SSL certificate files are in the /flash/cert directory
on the XBee Filesystem
- "ssl_params" shows which ssl parameters are required, and gives
examples for referencing the files

- If needed, replace the file paths to match the certificates you're
using
- The policy attached to the SSL certificates must allow for
publishing, subscribing, connecting, and receiving

- The host and region need to be filled in to create a valid
AWS endpoint to connect to

- Send this code to your XBee module using paste mode (CTRL-E)

- If you want to change any of the params in the method, call the method
again

and pass in the params you want

"""

from umqtt.simple import MQTTClient
import time, network

AWS endpoint parameters
host = b'FILL_ME_IN-ats' # ex: b'abcdefg1234567'
region = b'FILL_ME_IN' # ex: b'us-east-1'

aws_endpoint = b'%s.iot.%s.amazonaws.com' % (host, region)
ssl_params = {'keyfile': "/flash/cert/aws.key",

'certfile': "/flash/cert/aws.crt",
'ca_certs': "/flash/cert/aws.ca"} # ssl certs

conn = network.Cellular()
while not conn.isconnected():

print("waiting for network connection...")
time.sleep(4)

print("network connected")

def publish_test(clientId="clientId", hostname=aws_endpoint, sslp=ssl_
params):

"clientId" should be unique for each device connected
c = MQTTClient(clientId, aws_endpoint, ssl=True, ssl_params=sslp)
print("connecting...")
c.connect()

https://github.com/micropython/micropython-lib/tree/master/umqtt.simple

Use AWS IoT from MicroPython Confirm published data

Digi MicroPython Programming Guide 145

print("connected")

topic: "sample/xbee"
message: {message: AWS Samples are cool!}
print("publishing message...")
c.publish("sample/xbee", '{"message": "AWS Sample Message"}')
print("published")
c.disconnect()
print("DONE")

publish_test()

Confirm published data
From the AWS IoT Console, choose Test and subscribe to the topic # to see all messages pushed to
your account.

Note You will not see old messages, so open the Test console before running the sample code on
your device.

You can also navigate to your Thing and choose Activity to monitor when your Thing makes an MQTT
connection and then disconnects it.

Subscribe to updates from AWS
The XBee Cellular Modem can subscribe to topics published on the AWS server.

"""
Copyright (c) 2018, Digi International, Inc.
Sample code released under MIT License.

Instructions:

- Ensure that the umqtt/simple.py module is in the /flash/lib directory
on the XBee Filesystem

- Ensure that the SSL certificate files are in the /flash/cert directory
on the XBee Filesystem
- "ssl_params" shows which ssl parameters are required, and gives
examples for referencing the files

- If needed, replace the file paths to match the certificates you're
using
- The policy attached to the SSL certificates must allow for
publishing, subscribing, connecting, and receiving

- The host and region need to be filled in to create a valid
AWS endpoint to connect to

- The loop that checks for incoming traffic will end after it receives
"msg_limit" messages

- Send this code to your XBee module using paste mode (CTRL-E)

- If you want to change any of the params in the method, call the method
again

and pass in the params you want

"""

from umqtt.simple import MQTTClient

Use AWS IoT from MicroPython Subscribe to updates from AWS

Digi MicroPython Programming Guide 146

import time, network

AWS endpoint parameters
host = b'FILL_ME_IN-ats' # ex: b'abcdefg1234567'
region = b'FILL_ME_IN' # ex: b'us-east-1'

aws_endpoint = b'%s.iot.%s.amazonaws.com' % (host, region)
ssl_params = {'keyfile': "/flash/cert/aws.key",

'certfile': "/flash/cert/aws.crt",
'ca_certs': "/flash/cert/aws.ca"} # ssl certs

msgs_received = 0
conn = network.Cellular()
while not conn.isconnected():

print("waiting for network connection...")
time.sleep(4)

print("network connected")

Received messages from subscriptions will be delivered to this callback
def sub_cb(topic, msg):

global msgs_received
msgs_received += 1
print(topic, msg)

def subscribe_test(clientId="clientId", hostname=aws_endpoint, sslp=ssl_
params, msg_limit=2):

"clientId" should be unique for each device connected
c = MQTTClient(clientId, hostname, ssl=True, ssl_params=sslp)
c.set_callback(sub_cb)
print("connecting...")
c.connect()
print("connected")
c.subscribe("sample/xbee")
print("subscribed")
print('waiting...')
global msgs_received
msgs_received = 0
while msgs_received < msg_limit:

c.check_msg()
time.sleep(1)

c.disconnect()
print("DONE")

subscribe_test()

Time module example: get the current time

Note This section only applies to devices that support the Real Time Clock feature.

Use the time module to get the current time on the cellular network. The XBee Cellular Modem must
be connected to the cellular network.
The following examples describe coding the time module.

Retrieve the local time 148
Retrieve time with a loop 148
Delay and timing quick reference 149

Digi MicroPython Programming Guide 147

Time module example: get the current time Retrieve the local time

Digi MicroPython Programming Guide 148

Retrieve the local time
This code sample shows how to retrieve the local time. The time format is: year, month, day, hour,
second, day of week, day of year.

Note Day of week is 0 - 6 for Monday - Sunday and day of year is 1 - 366.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type import time and press Enter.
3. At the MicroPython >>> prompt, type time.localtime() and press Enter. The current time

prints.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
>>> import time
>>> time.localtime()
(2017, 1, 13, 14, 51, 18, 4, 13)

Retrieve time with a loop
In this example, you can use the time module to get the current time every five seconds. The code
executes in a loop, for a total of five loop iterations. In each iteration, the current local time is printed
to the terminal and then pauses for five seconds.
The time format is: year, month, day, hour, second, day of week, day of year.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

import time
print("\nPreparing to print the current time 5 times, once every 5
seconds.")
print("The time format is (year, month, day, hour, second, day,
yearday)\n")
for _ in range(5): # Loop 5 times.

print(time.localtime()) # Print out the current time.
print("Pause 5 seconds")
time.sleep(5)

print("Done!")

3. At the MicroPython >>> prompt, press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. The sample output below shows the five

loops that iterate every five seconds.

Preparing to print the current time 5 times, once every 5 seconds.
The time format is (year, month, day, hour, second, day, yearday)

(2017, 5, 10, 11, 30, 55, 2, 130)
Pause 5 seconds
(2017, 5, 10, 11, 31, 0, 2, 130)

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Time module example: get the current time Delay and timing quick reference

Digi MicroPython Programming Guide 149

Pause 5 seconds
(2017, 5, 10, 11, 31, 5, 2, 130)
Pause 5 seconds
(2017, 5, 10, 11, 31, 10, 2, 130)
Pause 5 seconds
(2017, 5, 10, 11, 31, 15, 2, 130)
Pause 5 seconds
Done!

Delay and timing quick reference
The table below contains additional time commands that you can use.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get value of millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Cellular network connection examples

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

You can use MicroPython code to check network connection on the XBee Cellular Modem.
The coding samples in the sections below show different methods you can use to check the network
connection.

Check the network connection 151
Check network connection with a loop 151
Check network connection and print connection parameters 152

Digi MicroPython Programming Guide 150

Cellular network connection examples Check the network connection

Digi MicroPython Programming Guide 151

Check the network connection
The ifconfig() method returns connection elements: IP address, subnet mask, default gateway and
DNS server.
Because cellular connections are point-to-point, the subnet mask and default gateway are always
255.255.255.255 and 0.0.0.0. The XBee Cellular Modem reports 0.0.0.0 for its IP address and DNS server
until it completes a connection to the cellular network.
In this sample, the return value options for the isconnected() method are:

n False: The XBee Cellular Modem is not connected to the cellular network. The IP address
reported by ifconfig() is 0.0.0.0.

n True: The XBee Cellular Modem is connected to the cellular network. All connection elements
should be populated.

Note that the connection elements that print depend on the XBee Cellular Modem network
configuration.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type import network and press Enter.
3. At the MicroPython >>> prompt, type c = network.Cellular() and press Enter.
4. At the MicroPython >>> prompt, type c.isconnected() and press Enter.

o If the return value is False, the cellular connection is not complete. Wait until the red
LED on the XBIB board is flashing (or if you have a different board, wait 5 to 10
seconds), and run the command again.

o If the return value is True, the cellular connection is complete.
5. Once the cellular connection is complete, you can print the IP settings. At the MicroPython >>>

prompt, type c.ifconfig() and press Enter to print the settings.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> import network
>>> c = network.Cellular()
>>> c.isconnected()
True
>>> c.ifconfig()
('100.96.17.xx', '255.255.255.255', '0.0.0.0', '100.96.17.xx')

Check network connection with a loop
The code in this example waits for the module to connect to the cellular network and then prints the
connection message and module network configuration information.
Note that the connection elements that print depend on the XBee Cellular Modem network
configuration.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Cellular network connection examples Check network connection and print connection parameters

Digi MicroPython Programming Guide 152

1. Access the MicroPython environment.
2. Copy the sample code shown below:

import network
import time

c = network.Cellular() # initialize Cellular object

while not c.isconnected(): # return if the module is connected to
cellular network

time.sleep_ms(100) # delay
print("It is now connected")
print("My IP address is",c.ifconfig()[0])

3. Press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once pasted, the code

should execute immediately.

It is now connected
My IP address is 166.184.xxx.xxx

Check network connection and print connection parameters
The code in this example waits for the module to connect to the cellular network and then prints the
connection message and the XBee Cellular Modem's connection parameters.
Note that the connection elements that print depend on the XBee Cellular Modem network
configuration.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

import network
import time

c = network.Cellular() # Initialize Cellular object.

Wait until the module is connected to the cellular network.
while not c.isconnected():

print("Waiting to be connected to the cellular network...")
time.sleep_ms(1500) # Pause 1.5 seconds between checking connection

print("Module is now connected to cellular network")
print("Here is a summary of module status:")
print("IP address:", c.ifconfig()[0])
print("SIM card number:", c.config('iccid'))
print("International Mobile Equipment Identity:", c.config('imei'))
print("Network operator:", c.config('operator'))
print("Phone number:", c.config('phone'))

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Cellular network connection examples Check network connection and print connection parameters

Digi MicroPython Programming Guide 153

3. Press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once pasted, the code

should execute immediately.

Waiting to be connected to the cellular network...
Module is now connected to cellular network
Here is a summary of module status:
IP address: 166.184.xxx.xxx
SIM card number: 89014103278193xxxxxx
International Mobile Equipment Identity: 357520070xxxxxx
Network operator: AT&T
Phone number: 1612xxxxxxx

Socket examples

The following sections include code samples for using sockets with the XBee Cellular Modem.

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

Sockets 155
Basic socket operations: sending and receiving data, and closing the network connection 155
Specialized receiving: send received data to a specific memory location 157
DNS lookup 158
Set the timeout value and blocking/non-blocking mode 159
Send an HTTP request and dump the response 161
Socket errors 162
Unsupported methods 162

Digi MicroPython Programming Guide 154

Socket examples Sockets

Digi MicroPython Programming Guide 155

Sockets
A socket provides a reliable data stream between connected network devices. You must import the
usocket module so that you can create and use socket objects.
If you are trying different socket examples and you have not power-cycled the XBee Cellular Modem or
cleared the MicroPython volatile memory (RAM), it is not necessary to re-type the following code, as it
remains in the memory.

Basic socket operations: sending and receiving data, and closing
the network connection

A socket opens a network connection, so that data can be requested by the XBee Cellular Modem. The
request is sent to the specified destination, and then received by the module. Once the data
communication is complete, you should close the socket to close the network connection.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

Basic data exchange code sample
The following example shows basic data exchange between a computer and a website.

1. Access the MicroPython environment.
2. Copy the sample code shown below.
3. Press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately.

Import the socket module.
This allows the creation/use of socket objects.

import usocket
Create a TCP socket that can communicate over the internet.
socketObject = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM)
Create a "request" string, which is how we "ask" the web server for
data.
request = "GET /ks/test.html HTTP/1.1\r\nHost:
www.micropython.org\r\n\r\n"
Connect the socket object to the web server
socketObject.connect(("www.micropython.org", 80))
Send the "GET" request to the MicroPython web server.
A "GET" request asks the server for the web page data.
bytessent = socketObject.send(request)
print("\r\nSent %d byte GET request to the web server." % bytessent)

print("Printing first 3 lines of server's response: \r\n")
Single lines can be read from the socket,
useful for separating headers or
reading other data line-by-line.
Use the "readline" call to do this.
Calling it a few times will show the
first few lines from the server's response.
socketObject.readline()

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Socket examples Basic socket operations: sending and receiving data, and closing the network connection

Digi MicroPython Programming Guide 156

socketObject.readline()
socketObject.readline()
The first 3 lines of the server's response
will be received and output to the terminal.

print("\nPrinting the remainder of the server's response: \n")
Use a "standard" receive call, "recv",
to receive a specified number of
bytes from the server, or as many bytes as are available.
Receive and output the remainder of the page data.
socketObject.recv(512)

Close the socket's current connection now that we are finished.
socketObject.close()
print("Socket closed.")

Response header lines
The first three lines received using the readline() call should look like the following output sample.
Note that the date reflects the current system date and time. These three lines are the "response
headers" of the server's reply, and include relevant data about the server and the content of the data
in the reply.

HTTP/1.1 200 OK
Server: nginx/1.8.1
Date: Tue, 28 Mar 2017 21:31:22 GMT

First line
The first line in the response depends on whether a valid request was sent.

n Valid request: If a valid request was sent and it was processed correctly, the first line should
always be "HTTP/1.1 200 OK".

n Invalid request: If an invalid request was sent, a response similar to "HTTP/1.1 400 Bad
Request" is received. This can occur if a typographical error is the original request, or if you do
not specify the host in the request with the line "Host: www.example.com".

recv() call
The recv() call receives the remainder of the page data. In this example, the requested page is small,
so all of the data remaining after the 3 readline() calls is received in this one call.
Several more "response headers" are visible in the reply to this call, followed by some HTML tags,
such as "<!DOCTYPE>" and "<head>". The web page being requested in the example consists only of a
header that reads "Test", with text underneath it reading "It's working if you can read this!" This
content is visible within the response, all of the content is inside of "<body>" tags, and the header is
inside of "<h1>" tags, also visible in the response.

Additional examples
If you want to try this example on other web servers, and see the different responses, you can repeat
the previous steps, but replace the following:

n /ks/test.html: This is inside the "request" variable and you can replace it with with "/" or a
specific path on a server.

Socket examples Specialized receiving: send received data to a specific memory location

Digi MicroPython Programming Guide 157

n www.micropython.org: This is inside the "request" variable AND inside the "address" variable
and you can replace it with the address of the site you want to test.

Note If you have not power-cycled the XBee Cellular Modem, and have not cleared the MicroPython
volatile memory (RAM) with a soft reboot, you do not need to re-type lines 2 or 4 of the above
example, since you already imported usocket and created the socket object. If you power off the XBee
Cellular Modem, however, or clear the MicroPython heap with a soft reboot, you need to import
usocket again and create the socket object again. Any variables you created will also no longer be in
memory.

Specialized receiving: send received data to a specific memory
location

You can use the readinto() method to receive data from a socket and save it to a buffer, which is a
specific memory location for reading and writing data. This is useful for processing data, since
processing operations can simply read from the buffer. You must create a buffer object to which the
readinto() method can write the data.
This method receives data from a socket in the same manner as the recv() method, but allows you to
specify a buffer location.
In this example, the readinto() method performs a read on the socket, and puts the data into buffer
that is specified by the user.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

The following example shows how to receive data from a socket and save it to a buffer. The readinto
() method performs a read on the socket, as can be done with recv(), but puts the data into a buffer
specified by the user. This is useful for processing data since you can reuse a dedicated buffer for
received data, and processing operations can simply read from that buffer.

1. Access the MicroPython environment.
2. Copy the sample code shown below.
3. Press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately.

Import the usocket module.

import usocket
Create socket object.
socketObject = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM)
Create address variable.
address = ("www.micropython.org", 80)
Create request variable.
request = "GET /ks/test.html HTTP/1.1\r\nHost:
www.micropython.org\r\n\r\n"
Create a blank array of bytes in memory, which can be used as a buffer.
buff = bytes object(1024)
Connect the socket object to the web server specified in "address".
socketObject.connect(address)
Send the GET request to the MicroPython web server.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Socket examples DNS lookup

Digi MicroPython Programming Guide 158

bytessent = socketObject.send(request)
print("\nSent %d byte GET request to server\n" % bytessent)

print("Waiting on server response...\n")
Read data from the socket and put it into the buffer we created.
"readinto" will read as many bytes as fit in the buffer, in this case
1024.
bytesread = socketObject.readinto(buff)
print("%d bytes written to buffer!" % bytesread)
Print the contents of the buffer, showing that the "readinto" call wrote
the web server's response into memory.
print("Contents of buffer: \n")
print(str(buff[:bytesread], 'utf8'))
Close the socket.
socketObject.close()
print("Socket closed.")

DNS lookup
You can use the getaddrinfo() function in the socket module to perform a DNS lookup of a of a
domain name, or retrieve information about a domain name or IP address.
In this example, this code imports the socket module and uses getaddrinfo() to perform a
DNS lookup on www.micropython.org. The target port is 80.
For detailed information about getaddrinfo(), see
micropython.org/resources/docs/en/latest/wipy/library/usocket.html.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below.
3. Press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.

import socket
Return tuple (family, type, proto, canonname, sockaddr)
print("\nCalling getaddrinfo() for micropython.org on port 80,")
print("this will return information about the host address in the")
print("following format:")
print("[family, type, proto, canonname, sockaddr]\n")
print(socket.getaddrinfo('www.micropython.org', 80))

Return sockaddr, which consists of an IP address and port
print("\nCalling getaddrinfo(), but returning only the address/port
tuple")
print("(\"sockaddr\") via indexing the output of getaddrinfo().\n")
print(socket.getaddrinfo('www.micropython.org', 80)[0][-1])

Return the IP address only
print("\nFinally, returning ONLY the IP address, via more specific")
print("indexing.\n")
print(socket.getaddrinfo('www.micropython.org', 80)[0][-1][0])

http://www.micropython.org/
http://docs.micropython.org/en/latest/pyboard/library/usocket.html
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Socket examples Set the timeout value and blocking/non-blocking mode

Digi MicroPython Programming Guide 159

5. Once pasted, the code should execute immediately. The output should be similar to the output
shown below.

Calling getaddrinfo() for micropython.org on port 80, this will

return information about the host address in the following format:
[family, type, proto, canonname, sockaddr]

[(2, 1, 0, '', ('176.58.119.26', 80))]

Calling getaddrinfo(), but returning only the address/port tuple
("sockaddr") via indexing the output of getaddrinfo().

('176.58.119.26', 80)

Finally, returning ONLY the IP address, via more specific
indexing.

176.58.119.26

DNS lookup code output
The output of the getaddrinfo() method call is in the following form: (family, type, protocol,
canonname, sockaddr)
In the output sample, the fourth line of text includes the output of the getaddrinfo() method call.

Value Description

2 <family>
An integer that represents the type of connection the socket is using.
Represents the usocket.AF_INET, meaning an internet family of connection.

1 <type>
An integer that represents the type of connection the socket is using.
Represents usocket.SOCK_STREAM, meaning a TCP connection.

0 <protocol>
An integer that represents the type of connection the socket is using.
Represents usocket.IPPROTO_IP, meaning the IP protocol.

empty string <canonname>
A string that represents the "canonical" name of the host, if it has one. If the host
does not have a "canonical" name, an empty string is used.

176.58.119.26,
80

<sockaddr>
The IP address and port number of the machine you queried.

Set the timeout value and blocking/non-blocking mode
You can set the socket's timeout value using the settimeout() module. The timeout value is the
amount of time the socket waits for data to become available to read.
The value can be set to one of the following:

Socket examples Set the timeout value and blocking/non-blocking mode

Digi MicroPython Programming Guide 160

n Non-negative integer: Defines the length of time for the timeout value. The time is measured
in seconds.

n Floating-point value: Defines the length of time for the timeout value. The time is measured in
seconds.

n 0 (zero): Makes the socket non-blocking. The socket returns immediately, regardless of
whether there is anything to read.

n None: Makes the socket blocking. The socket waits indefinitely for data to become available to
read, or waits up until the socket times out or closes.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

The code below shows examples of all of these options:

Import the socket module.
import usocket
Create socket object.
socketObject = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM)
Create address variable.
address = ("www.micropython.org", 80)
Connect to the server specified in "address".
socketObject.connect(address)
print("\nSetting socket timeout to 5 seconds.")
Set the timeout to 5 seconds.
socketObject.settimeout(5)
print("Calling RECV- this will timeout since no data was requested.\n")
Call "recv", even though no data has been requested from the host yet,
meaning none will be received.
try:
socketObject.recv(1024)
except OSError as error:
print("Socket timed out!\n")
except:print("An error occurred.")

After 5 seconds, there will be an "ETIMEDOUT" OSError, meaning
the read timed out. This will not print to the screen since it is
caught
by the "except" block.
print("Setting socket timeout to zero (non-blocking).")
Set the socket to be non-blocking, by setting the timeout to 0.
socketObject.settimeout(0)
print("Calling RECV- should return immediately with no data.\n")
Call "recv".
try:
socketObject.recv(1024)
except OSError:
print("No data to read!\n")
except:
print("An error occurred.")

The call will return right away.
print("Setting socket mode to \"Blocking\" meaning it will wait for
data.")
NOTE: the method "setblocking" is a shorthand way of setting blocking:
calling "socketObject.setblocking(False)" is shorthand for calling
"socketObject.settimeout(0)".

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Socket examples Send an HTTP request and dump the response

Digi MicroPython Programming Guide 161

This call will set the socket to be blocking:
socketObject.setblocking(True)
print("Calling RECV with a blocking socket.")
print("This will wait for data, until it either receives it,")
print("the socket times out, or the user cancels the call.\n")
print("This call will time out after approximately 60 seconds. If you
don't")
print("feel like waiting to see that happen, feel free to")
print("press Ctrl-C to cancel the RECV call and return to a prompt...")
Call "recv".
socketObject.recv(1024)
The call will not return until the server sends data (which won't happen
in
this case, since none was requested), or the socket times out.

Send an HTTP request and dump the response
You can use the http_get() command to send an HTTP request and then dump the response. You can
use the dump_socket() method with any open socket, and it will automatically exit when the remote
end closes the connection.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below. This code splits a URL into the hostname and path,

connects to the server at the host name, and sends a request for the page at the path. The
code then prints the response to the screen.

import socket

def http_get(url):
scheme, _, host, path = url.split('/', 3)
s = socket.socket()
try:

s.connect((host, 80))
request=bytes('GET /%s HTTP/1.1\r\nHost: %s\r\n\r\n' % (path,

host), 'utf8')
print("Requesting /%s from host %s\n" % (path, host))
s.send(request)
while True:

print(str(s.recv(500), 'utf8'), end = '')
finally:

s.close()

3. At the MicroPython >>> prompt, press Crtl+E to enter paste mode.
4. At the MicroPython 1=== prompt, right-click and select the Paste option.

5. After pasting the code, press Ctrl+D to finish. You can now retrieve URLs a the MicroPython >>>
prompt.

http_get('http://www.micropython.org/ks/test.html')

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Socket examples Socket errors

Digi MicroPython Programming Guide 162

Socket errors
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

This following socket errors may occur.

ENOTCONN: Time out error
If a socket stays idle too long, it will time out and disconnect. Attempting to send data over a socket
that has timed out produces the OSError ENOTCONN, meaning "Error, not connected." If this
happens, perform another connect() call on the socket to be able to send data again.

ENFILE: No sockets are available
The socket.socket() or socket.connect() method returns an OSError (ENFILE) exception if no sockets
are available. If you are already using all of the available sockets, this error may occur in the few
seconds between calling socket.close() to close a socket, and when the socket is completely closed
and returned to the socket pool.
You can use the following methods to close sockets and make more sockets available:

n Close abandoned sockets: Initiate garbage collection (gc.collect()) to close any abandoned
MicroPython sockets. For example, an abandoned socket could occur if a socket was created in
a function but not returned. For information about the gc module, see the MicroPython
garbage collection documentation.

n Close all allocated sockets: Press Ctrl+D to perform a soft reset of the MicroPython REPL to
close all allocated sockets and return them to the socket pool.

ENXIO: No such device or address
OSError(ENXIO) is returned when DNS lookups fail from calling usocket.getaddrinfo().

Unsupported methods
The following methods are standard features of the Python socket interface that are not supported on
this version of the XBee Cellular Modem.

n setsockopt()

http://docs.micropython.org/en/latest/pyboard/library/gc.html
http://docs.micropython.org/en/latest/pyboard/library/gc.html

I/O pin examples

Note This section only applies to devices that support the Pin I/O feature.

The following sections include code samples for changing the XBee device's pins.

Change I/O pins 164
Print a list of pins 164
Change output pin values: turn LEDs on and off 165
Poll input pin values 165
Check the configuration of a pin 166
Check the pull-up mode of a pin 168
Measure voltage on the pin (Analog to Digital Converter) 169

Digi MicroPython Programming Guide 163

I/O pin examples Change I/O pins

Digi MicroPython Programming Guide 164

Change I/O pins
You can use MicroPython to change the pins on the XBee device.
By initializing a pin object, you can change the pin to be an input pin or an output pin.

n If a pin is set up as an output, a pin's output value can be set on or off.
n If the pin is set up as a digital input, you can read the digital value on it.

When initializing a pin, the first argument must be an object within the machine.Pin.board module,
or a string that matches one of these objects.
For example, in the line of code below, the identifier P0 refers to the DIO10/PWM0 pin:

dio10 = Pin("P0", Pin.OUT)

Note You can replace P0 with Pin.board.P0 as P0 is a quoted string and Pin.board.P0 is an object
reference. Pin.board.P0 only works if you have previously entered from machine import Pin.

Note MicroPython does not currently support identifying a pin with an integer ID.

The pins available to the system can be seen after importing the machine module by typing dir
(machine.Pin.board).

Print a list of pins
You can use the help(Pin.board) command to print a list of the pins available on the XBee device.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type from machine import Pin and press Enter.
3. At the MicroPython >>> prompt, type help(Pin.board) and press Enter. The following is a list

of available pins.

>>> from machine import Pin
>>> help(Pin.board)
object <class 'board'> is of type type
D0 -- Pin(Pin.board.D0, mode=Pin.IN, pull=Pin.PULL_UP)
D1 -- Pin(Pin.board.D1, mode=Pin.IN, pull=Pin.PULL_UP)
D2 -- Pin(Pin.board.D2, mode=Pin.IN, pull=Pin.PULL_UP)
D3 -- Pin(Pin.board.D3, mode=Pin.IN, pull=Pin.PULL_UP)
D4 -- Pin(Pin.board.D4, mode=Pin.IN, pull=Pin.PULL_UP)
D5 -- Pin(Pin.board.D5, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF5_ASSOC_

IND)
D6 -- Pin(Pin.board.D6, mode=Pin.IN, pull=Pin.PULL_UP)
D7 -- Pin(Pin.board.D7, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF7_CTS)
D8 -- Pin(Pin.board.D8, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF8_SLEEP_

REQ)
D9 -- Pin(Pin.board.D9, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF9_ON_SLEEP)
P0 -- Pin(Pin.board.P0, mode=Pin.OUT)
P1 -- Pin(Pin.board.P1, mode=Pin.IN, pull=Pin.PULL_UP)
P2 -- Pin(Pin.board.P2, mode=Pin.IN, pull=Pin.PULL_UP)

Note The pin list may vary between XBee devices that have different I/O capabilities.

I/O pin examples Change output pin values: turn LEDs on and off

Digi MicroPython Programming Guide 165

Change output pin values: turn LEDs on and off
You can change the output value of a pin on the XBee device using an "active high" configuration. This
means that turning the pin ON turns the LEDs ON, not OFF.
For example, you can change the value of a pin that is connected to some of the LEDs on an XBIB-U-
DEV board. The change in pin state is shown by the LEDs being illuminated or not. The pin in the
example is connected to three green LEDs in an "active high" configuration.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below.
3. At the MicroPython >>> prompt, press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. The print statements in the code block

below print to the terminal.

Import the Pin module
from machine import Pin
print("\nTake note of the 3 green LEDs to the right of the USB port on
the")
print("XBIB-UDEV board, they normally turn on during boot-up.")
print("Creating a pin object for the pin these LEDs are connected
to...\n")
Set up a Pin object to represent pin 6 (PWM0/RSSI/DIO10).
The second argument, Pin.OUT, sets the pin's mode to be an OUTPUT.
The third argument sets the initial value, which is 0 here, meaning OFF.
dio10 = Pin("P0", Pin.OUT, value=0)
print("The LEDs should now be OFF, since we set the pin to output \"0\"")
print("For verification, we will check the value of the pin:")
After running the above command, the green LEDs should now all be OFF.
Verify the value of the pin's output by calling the "value" method
without
any parameters.
pinval = dio10.value()
This should return "0", which is correct given that the LEDs are OFF,
they are active high, and we set the initial value to be 0.
print("Pin value (retrieved using the \"value()\" method): %d\n" % pinval)
_ = input("Press Enter to change the pin value from 0 to 1.\n")
print("Turning the LEDs ON by setting the pin to 1 with the value()
method...")
Turn the LEDs on.
dio10.value(1)
The LEDs should turn on and stay on.
print("The LEDs should now be ON!")

Poll input pin values
You can use the value() method to check the present value on a pin set up to be in input mode. With
polling, you can use MicroPython code to monitor the value of a pin. During polling, the system
constantly checks the value of the pin. MicroPython can then perform an action when the value on the
pin changes.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

I/O pin examples Check the configuration of a pin

Digi MicroPython Programming Guide 166

The following example demonstrates a simple loop that waits for the user to press a button on the
XBIB board, which is connected to a pin on the XBee device. This sample uses the value() method to
return the current value on an input pin, and uses polling to monitor a pin.

1. Access the MicroPython environment.
2. Copy the code sample below. This code imports the pin module from the machine module and

creates a pin object ad0 to represent pin 20.

from machine import Pin
ad0 = Pin("D0", Pin.IN, Pin.PULL_UP)

3. At the MicroPython >>> prompt, press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Copy the code sample below. This code returns the current value of pin 20. This pin is pulled

up on the development board and will read 1 until the SW2 button on the development board
is pressed.

ad0.value()

6. Press Crtl+E to enter paste mode.
7. At the MicroPython >>> prompt, right-click and select the Paste option.
8. Copy the code sample below. This code waits for the SW2 button to be pressed, prints a

message, and then exits the program.

while True:
if ad0.value() == 0:

print("SW2 has been pressed!")
break

9. Press Crtl+E to enter paste mode.
10. At the MicroPython >>> prompt, right-click and select the Paste option.

11. Press Enter until "..." is no longer displayed on the left. The code that was entered is now
running. It is waiting for the value of the pin to go from 1 to 0.

12. Press the SW2 button on the XBIB board. It is below and left of the RESET button, with the USB
port facing you. The terminal should output SW2 has been pressed!, then go back to the
MicroPython >>> prompt on a new line.

Check the configuration of a pin
You can check the configuration of a pin using the mode() method when the pin is set up as an input,
output, analog, or other function.
The following example shows the basics of these modes.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

I/O pin examples Check the configuration of a pin

Digi MicroPython Programming Guide 167

Import the Pin module from the machine module
from machine import Pin

print("\nChecking the mode of AD0/DIO pin...")
pinmode = Pin.board.D0.mode()
This should return "0", meaning it is in input mode.
print("AD0/DIO0 is in mode: %d\n" % pinmode)

print("Checking the mode of Associate/DIO5 pin...")
pinmode = Pin.board.D5.mode()
This should return "2", meaning it is in "ALT" mode by default,
meaning an alternative function, generally board or port-specific.
print("ASSOC/DIO5 is in mode: %d\n" % pinmode)

print("Creating a pin object for ASSOC/DIO5, setting it as an input...")
d5 = Pin("D5", Pin.IN, Pin.PULL_UP)
print("Checking DIO5's mode using the \"mode\" method...")
pinmode = d5.mode()
This should return "0", meaning it is an input, which is how it was
initialized when d5 was created.
print("DIO5 is in mode: ", pinmode)
print("Note the fact that this pin started out in either ALT or OUTPUT
mode")
print("(value 2 or 1) and is now in input mode (value 0).\n")

print("The modes can be seen by printing the values of the main pin
modes:")
print("Pin.IN: ", Pin.IN) # This should print "0", this is input mode.
print("Pin.OUT: ", Pin.OUT) # This should print "1", this is output mode.
print("Pin.ALT: ", Pin.ALT) # This should print "2", this is ALT mode.
ALT stands for "alternate", and is usually a port-specific function.
print("Pin.OPEN_DRAIN: ", Pin.OPEN_DRAIN) # This should print "17".
Open Drain is an output configuration referring to the circuit
positioning
of the drive transistor.
print("Pin.ANALOG: %d\n" % Pin.ANALOG)
This should print "3", this is analog mode.

print("Changing the pin DIO5 to be an output, rather than an input, using
the")
print("\"mode\" method...")
d5.mode(Pin.OUT) # Set to output
print("Checking the mode of the pin after the change...")
pinmode = d5.mode() # This should return "1".
print("DIO5 is in mode: %d" % pinmode)
print("Note that value of 1 corresponds to an output, as we set it.\n")
This means the pin is an output, just as we defined it.
print("Note that pin DIO5 has held at least 2 different mode values in
this")
print("example, showing the different pin modes and how they can be
changed.")

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. You should see output showing the

different values generated by the print and mode commands.

I/O pin examples Check the pull-up mode of a pin

Digi MicroPython Programming Guide 168

Check the pull-up mode of a pin
You can use the pull() method to check the pull-up mode of a pin. The mode options are:

n Pin.PULL_UP: The pin has a default "high" value by connecting it to voltage using a resistor:
"pulling up".

n Pin.PULL_DOWN: The pin has a default "low" value by connecting it to ground with a resistor:
"pulling down".

The following example demonstrates how to check the pull direction of one of the pins on the XBee
device and the resultant values on the pin.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below.

Import the pin module

from machine import Pin

print("\nChecking the default pull-direction of the AD0/DIO0 pin...")
pinpull = Pin.board.D0.pull()
This call should return "1", meaning it is set to "PULL_UP".
print("AD0/DIO0 is set to: %d\n" % pinpull)

print("The two different values for pull direction can be viewed:")
print("Pin.PULL_UP: %d" % Pin.PULL_UP) # This should return "1".
print("Pin.PULL_DOWN: %d\n" % Pin.PULL_DOWN) # This should return "2".

Now, make a pin object for pin AD0/DIO0, set as an input, and pulled
down to ground (0).
print("Creating a pin object for AD0/DIO0, pulled DOWN...")
d0 = Pin("D0", Pin.IN, Pin.PULL_DOWN)
print("Checking the pull direction of this pin...")
pinpull = d0.pull()
print("Pull direction of AD0/DIO0: %d\n" % pinpull)
This should return "2", since it was just set to "PULL_DOWN".
print("Checking the value present on the pin...")
pinval = d0.value()
print("Value on AD0/DIO0: %d" % pinval)
print("This should return 0, since the pin is pulled down to ground.\n")

print("Changing the pin mode to be PULL_UP.")
d0.pull(Pin.PULL_UP)
print("Checking the pull direction of this pin...")
pinpull = d0.pull()
print("Pull direction of AD0/DIO0: %d" % pinpull)
print("This should return 1, since it was just set to PULL_UP.\n")
print("Checking the value on the pin again...")
pinval = d0.value()
print("Value on AD0/DIO0: %d" % pinval)
print("This should now return 1 now, instead of 0. This means the pin
was")
print("successfully \"pulled up\" to Vdd, or a logic 1.\n")

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

I/O pin examples Measure voltage on the pin (Analog to Digital Converter)

Digi MicroPython Programming Guide 169

Now that DIO0 is pulled up, we can examine how a pulled-up input works.
Holding down the button "SW2"/"DIO0", check the value on the pin again.
print("Now we can examine how a pulled-up pin acts when connected to
ground.")
_ = input("Press and hold SW2 on the XBIB board, then press Enter.")
pinval = d0.value()
print("\nValue on AD0/DIO0: %d" % pinval)
print("The value should now be 0. This is because SW2 connected the pin
to")
print("ground, causing current to flow through the pull-up resistor,
which")
print("dropped the voltage to 0.")

3. At the MicroPython >>> prompt, type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. You should see output showing the

different values generated by the pull and value commands.

Measure voltage on the pin (Analog to Digital Converter)
The device has four ADC inputs available to the user. These channels allow measurement of a voltage
on the pin. The voltage measurement is represented and returned as a 12-bit value, which is a number
between 0 and 4095, where 0 represents 0 V and 4095 represents 2.5 V (XBee Cellular Modem). For
Zigbee, DigiMesh, and 802.15.4 XBee Devices 4095 can represent 1.25 V, 2.5 V or VDD with using the
ATAV command (default is 1.25 V)
The following example shows the basics of using ADC.

n The first read() call produces a high value, even though the pin is not connected to anything.
This is known as "floating" pin. The high value is caused by voltage being generated at the pin
from electromagnetic waves coming from other circuits on the board as well as the electrical
power at your location. If a multimeter that is set to measure DC voltage is connected between
the pin and ground, the read() method returns a low value, between 0 and 500. Generally a
low value is under 100.

n The second read() call is almost always 0, or very close to 0. This is because the pin is
connected directly to ground by the SW2 button. A multimeter has a high input impedance,
compared to the low (almost zero) impedance of a switch or button.

This example can be repeated with AD1, AD2, and AD3. Just replace "D0" with "D1", "D2", or "D3",
respectively. The button for AD1 is SW3 (DIO1), for AD2 is SW4 (DIO2), and for AD3 is SW5 (DIO3). All
four ADC channels work the same way and can all be used at the same time.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

Import ADC from machine, for simpler syntax.
from machine import ADC

Create an ADC object for pin AD0.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

I/O pin examples Measure voltage on the pin (Analog to Digital Converter)

Digi MicroPython Programming Guide 170

print("\nCreating an ADC object for pin AD0...")
adc0 = ADC("D0")
Perform a read of the analog voltage value present at the pin.
print("Reading the ADC value on the pin...")
adc_value = adc0.read()
print("ADC read #1 value: %d\n" % adc_value)
print("This will generally return a high value, around 4095,")
print("but can return any value, since the pin is not connected")
print("to anything, called \"floating\".")

Now, holding down the SW2/DIO0 button, perform another read.
_ = input("Press and hold SW2, then press Enter on your keyboard.\n")
print("Reading ADC0 again...")
adc_value = adc0.read()
print("ADC read #2 value: %d" % adc_value)
This should return a low value, around 0.
print("Note that this value is low, it should be 0 or close to 0.")
print("This is because the pin was connected to ground, which is")
print("generally recognized as a 0 volt reference.")

If something that output a variable voltage was connected to pin AD0,
such as
a sensor or transducer, it could be measured by taking the value it
returned,
dividing it by 4095, and multiplying by the reference voltage.

For example, if the reference voltage is 2.5VDC, and a 1.0VDC signal is
present on the pin, a "read()" call would return approximately 1638,
which is
equal to (1.0/2.5)*4095.

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. You should see output showing the

different values generated by the ADC read commands.

SMS examples

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device?
for a list of the supported features.

You can use MicroPython code to send and receive short message service (SMS) messages. You can
specify a phone number and send a message of up to 160 characters. A received message includes the
phone number from which the message was sent and the message text.
The following sections include code samples for sending and receiving an SMS message from and to
the XBee Cellular Modem.

Send an SMS message 172
Send an SMS message to a valid phone number 172
Check network connection and send an SMS message 172
Send to an invalid phone number 173
Receive an SMS message 173
Receive an SMS message using a callback 175

Digi MicroPython Programming Guide 171

SMS examples Send an SMS message

Digi MicroPython Programming Guide 172

Send an SMS message
Before you begin sending SMS messages, verify that the XBee Cellular Modem is connected to the
cellular network. For information on checking the network connection, see Cellular network
connection examples.
You can use the network.Cellular() class to send an SMS message from the XBee Cellular Modem. The
message consists of the following:

n Phone number: The phone number of the device that should receive the message. The phone
number can be either a string, such as ('19525551212') or ('+19525551212'), or an integer
(19525551212).

n Message: A message of up to 160 characters.

If the message is sent successfully, sms_send() returns None. If the message fails, an error message is
returned.

Send an SMS message to a valid phone number
The code in this example sends a message to the specified phone number.

Note In the example below, replace the sample phone number 1123456789 with a valid mobile
telephone number.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type import network and press Enter.
3. At the MicroPython >>> prompt, type c=network.Cellular() and press Enter.
4. At the MicroPython >>> prompt, type c.sms_send('1123456789', 'MicroPython on XBee

Cellular is the best!') and press Enter.

Check network connection and send an SMS message
The code in this example waits for the module to connect to the cellular network and then send out
the SMS message.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

The number "***" in the example code must be replaced with the 10-digit mobile telephone
number to which you wish to send an SMS message.

import network
import time

number = "***" # please fill in the target number
message = "MicroPython on XBee Cellular is the best!" # Message to sent
out

c = network.Cellular()
while not c.isconnected():

print("waiting to be connected to the cellular network...")
time.sleep_ms(1500) # Pause 1.5 seconds between checking connection

print("The module is connected to the cellular network. Now send the

SMS examples Send to an invalid phone number

Digi MicroPython Programming Guide 173

message")
try:

c.sms_send(number, message)
print("Message sent successfully to " + number)

except Exception as e:
print("Send failure: " + str(e))

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. If the SMS message sends successfully, a

message prints.

The module is connected to the cellular network. Now send the message
Message sent successfully to "xxxxxxxxxx"

Send to an invalid phone number
The code in this example sends a message to an invalid phone number. An invalid phone number
error message is returned.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type import network and press Enter.
3. At the MicroPython >>> prompt, type c = network.Cellular() and press Enter.
4. At the MicroPython >>> prompt, type c.sms_send('1', 'test') and press Enter.

>>> c.sms_send('1', 'test')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid SMS phone number

Receive an SMS message
You can use the sms_receive() method on the network.Cellular() class to receive any SMS messages
that have been sent. This class returns one of the following:

n None: There is no message.
n Message entry consisting of:

l message: The message text, which is converted to a 7-bit ASCII with extended Unicode
characters changed to spaces.

l sender: The phone number from which the message was sent.
l timestamp: The number of seconds since 1/1/2000, which is passed to time.localtime()

and then converted into a tuple of datetime elements.

MicroPython only buffers a single received SMS message. If two messages arrive between successive
calls to sms_receive(), you will receive only the most recent message.
Before you can receive an SMS message, you should verify that the XBee Cellular Modem is connected
to the cellular network. For information on checking the network connection, see Cellular network
connection examples.

SMS examples Receive an SMS message

Digi MicroPython Programming Guide 174

Sample code
The code in this example commands the device to wait for and then output the incoming SMS
message.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the code sample below.

import network
import time

c = network.Cellular() # Initialize the network parameter object.

def timestamp(t = None): # Obtain and output the current time.
return "%04u-%02u-%02u %02u:%02u:%02u" % time.localtime(t)[0:6]

Check for incoming sms message, output the message if there is any.
def check_sms():

Return the incoming message, or "None" if there isn't one.
msg = c.sms_receive()
if msg:

print('SMS received at %s from %s:\n%s' %
(timestamp(msg['timestamp']), msg['sender'], msg['message']))

return msg

def wait_for_sms():
while not check_sms(): # Wait until a message arrives.

print("Waiting for message...")
time.sleep_ms(1500)

wait_for_sms()

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Press Ctrl+D to compile and run the code. The device starts waiting for an incoming message.
6. Once this is running, an SMS message must be sent to the 10-digit phone number associated

with the XBee Cellular Modem for a message to be received. The received message prints,
including the time the message was received and the phone number from which the message
was sent.

Waiting for message...
Waiting for message...
Waiting for message...
SMS received at 2017-05-09 16:53:39 from 2125550199:
hello world

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

SMS examples Receive an SMS message using a callback

Digi MicroPython Programming Guide 175

Receive an SMS message using a callback
The code in this example registers a callback to be called when an SMS is received.

import network

def my_callback(sms):
print("SMS received from %s >> %s" % (sms['sender'], sms['message']))

cellular = network.Cellular() # Initialize the network parameter object.

cellular.sms_callback(my_callback)

XBee device examples

AT commands control the XBee device. The "AT" is an abbreviation for "attention," and the prefix "AT"
notifies the modem about the start of a command line. For detailed information about the AT
commands that you can use with the XBee device, see the AT commands section in the appropriate
user guide.
The atcmd() method first appeared in the xbee.XBee() class on the XBee Cellular products. For the
XBee3 Zigbee products and XBee Cellular firmware versions of x0B and later, it is accessible directly
from the xbee module, for example, xbee.atcmd(). The atcmd() method can have two parameters.

n The first parameter is the 2-character AT command. If a second parameter is not specified, the
command executes the first command and returns the result as an integer, string, or bytes
object, depending on the settings in the internal XBee command table.

n Use an optional second parameter to set an AT value to an integer, bytes object or string.

Note For the XBee Cellular Modem, the xbee().atcmd() method does not support the following AT
commands: AS, FS, IS and LA.
For the XBee 3 Zigbee RF Module, the xbee.atcmd() function does not support the following AT
commands: IS, ED, AS, ND and DN. To perform a network discovery equivalent to an ND command,
use the xbee.discover() function.

The following sections include MircroPython AT command code samples you can use with the XBee
device.

Print the temperature of the XBee Cellular Modem 177
Print the temperature of the XBee 3 Zigbee RF Module 177
Print a list of AT commands 178
xbee.discover() examples 180
xbee.transmit() examples 181

Digi MicroPython Programming Guide 176

https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm
https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm

XBee device examples Print the temperature of the XBee Cellular Modem

Digi MicroPython Programming Guide 177

Print the temperature of the XBee Cellular Modem
You can use atcmd() to read or set AT command parameter values.
In this example, the MicroPython code prints the temperature of the XBee Cellular Modem, reports the
current IP address of the device, and assigns a value to the DL parameter.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

import xbee
x = xbee.XBee()
AT command 'MY' records the current IP address assigned to the module.
print("Current IP address on module: " + x.atcmd('MY'))

set 'DL' (destination address parameter) to be "52.43.121.77".
print("Now set ATDL value to 52.43.121.77.")
x.atcmd('DL', "52.43.121.77")
print("Setup succeeds. The default target IP address is: " + x.atcmd
('DL'))
'TP' records the current temperature measure on the module
tp= xbee.atcmd('TP')
if tp > 0x7FFF:

tp = tp - 0x10000
print("The XBee is %.1F degrees" % (tp * 9.0 / 5.0 + 32.0))

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. You should see a list of the items

generated by the print command:

Current IP address on module: 100.65.176.112
Now set ATDL value to 52.43.121.77.
Setup succeeds. The default target IP address is: 52.43.121.77
The XBee Cellular is 111.1

Print the temperature of the XBee 3 Zigbee RF Module
You can use atcmd() to read or set AT command parameter values.
In this example, the MicroPython code prints the temperature of the XBee Cellular Modem, reports the
current address of the device, and assigns a value to the DL parameter.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

XBee device examples Print a list of AT commands

Digi MicroPython Programming Guide 178

import xbee
AT commands 'SH' + 'SL' combine to form the module's 64-bit address.
addr64 = xbee.atcmd('SH') + xbee.atcmd('SL')
print("64-bit address: " + repr(addr64))

AT Command 'MY' is the module's 16-bit network address.
print("16-bit address: " + repr(xbee.atcmd('MY')))

Set the Network Identifier of the radio
xbee.atcmd("NI", "XBee3 module")

Configure a destination address using two different data types
xbee.atcmd("DH", 0x0013A200) # Hex
xbee.atcmd("DL", b'\x12\x25\x89\xF5') # Bytes

dest = xbee.atcmd("DH") + xbee.atcmd("DL")
formatted_dest = ':'.join('%02x' % b for b in dest)
print("Destination address set to: " + formatted_dest)

'TP' records the current temperature measure on the module
tp= xbee.atcmd('TP')
if tp > 0x7FFF:

tp = tp - 0x10000
print("The XBee is %.1F degrees" % (tp * 9.0 / 5.0 + 32.0))

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. You should see a list of the items

generated by the print command:

64-bit address: 1754658623
16-bit address: 65534
Destination address set to: 00:13:a2:00:12:25:89:f5
The XBee is 78.8 degrees

Print a list of AT commands
You can read and show output for multiple AT commands and I/O parameter values.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the appropriate sample code shown below. For XBee Cellular Modem:

import xbee
x = xbee.XBee()

def dump_atcmds(): # This function outputs multiple AT parameter values.

print("Here is a summary of all AT values:")
print()
for cmd in ['PH', 'S#', 'IM', 'MN', 'MV', 'DB', 'AM', 'IP', 'TL',

'TM',

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

XBee device examples Print a list of AT commands

Digi MicroPython Programming Guide 179

'DO', 'DL', 'DE', 'MY', 'BD', 'NB', 'SB', 'RO', 'TD', 'FT', 'AP',

'D8', 'TP', 'SM', 'SP', 'ST', 'CC', 'CT', 'GT', 'VL']:
print(cmd, '=', x.atcmd(cmd))

print("The following AT values are in HEX format:")
for hexcmd in ['VR', 'HV', 'AI', 'DI', 'CI', 'HS', 'CK']:

print(hexcmd, '=', hex(x.atcmd(hexcmd)))

def dump_iocmds(): # This function outputs multiple IO parameter values.
print("Here is a summary of all IO values:")
for cmd in ['D0', 'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D8',

'D9',
'P0', 'P1']:
print(cmd, '=', x.atcmd(cmd))

print("The following IO values are in HEX format:")
for hexcmd in ['PR', 'PD']:

print(hexcmd, '=', hex(x.atcmd(hexcmd)))

dump_atcmds()
print()
dump_iocmds()

For XBee 3 Zigbee RF Module:

import xbee
at_cmds = {

"01. Network": ["CE", "ID", "ZS", "CR", "NJ",
"NW", "JV", "JN", "DO", "DC"],

"02. Operating_Network": ["AI", "OP", "OI", "CH", "NC"],
"03. Security": ["EE", "EO", "KY", "NK", "KT", "I?"],
"04. Addressing": ["SH", "SL", "MY", "MP", "DH",

"DL", "NI", "NH", "BH", "AR",
"DD", "NT", "NO", "NP"],

"05. Zigbee Addressing": ["TO", "SE", "DE", "CI"],
"06. RF Interfacing": ["PL", "PP", "SC", "SD", "DB"],
"07. UART Interface": ["BD", "NB", "SB", "AP", "AO",

"RO", "D6", "D7", "P3", "P4"],
"08. AT Command Options": ["CT", "GT", "CC"],
"09. MicroPython Options": ["PS"],
"10. Sleep Modes": ["SM", "SP", "ST", "SN", "SO",

"WH", "PO"],
"11. I/O Settings": ["D0", "D1", "D2", "D3", "D4",

"D5", "D6", "D7", "D8", "D9",
"P0", "P1", "P2", "P3", "P4",
"P5", "P6", "P7", "P8", "P9",
"PR", "PD", "LT", "RP"],

"12. I/O Sampling": ["IR", "IC", "V+"],
"13. Diagnostics": ["VR", "VH", "HV", "%V", "TP", "CK"]
}

print("Here is a summary of all AT values:\n")
for category, cmds in sorted(at_cmds.items()):

print("\n{}:".format(category))
for cmd in cmds:

try:
value = xbee.atcmd(cmd)

except KeyError:

XBee device examples xbee.discover() examples

Digi MicroPython Programming Guide 180

print("Invalid command:", cmd)
else:

if (type(value) is int) and (value > 0xF):
print(cmd, '=', hex(value))

else:
if type(value) is bytes:

Format Bytes as colon-delimited
value = ':'.join('%02x' % b for b in value)

print(cmd, '=', value)

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.

5. After you press Ctrl+D to compile and run the code, a list of AT commands and I/O parameter
values is printed:

Here is a summary of all AT values:
PH = xxx
S# = xxx
IM = xxx
MN = Verizon
MV = xxx
DB = 93
AM = 0
(...)
[truncated for brevity]

xbee.discover() examples
Since the call to xbee.discover() returns an iterator which will block each time it is queried, the way
that elements in the returned list are accessed can affect the timing of the application. The following
examples shows two ways you can use xbee.discover() (the examples assume an N? time of 10
seconds).

Handle responses as they are received
Using xbee.discover() as the iterator in a for loop will handle each response as it is received.

1. Access the MicroPython environment.
2. Copy the sample code shown below.

import xbee
for i in xbee.discover():
print(i)

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Press Ctrl+D to run the code.

Running the above code prints out each response as it is received over the course of 10 seconds. Keep
the processing for each response (in other words the code in the for loop) to a minimum to avoid
missing responses.

XBee device examples xbee.transmit() examples

Digi MicroPython Programming Guide 181

Gather all responses into a list
Calling list(xbee.discover()) will block until the discovery completes and return a list of all responses
found.
Access the MicroPython environment.

1. Copy the sample code shown below.

>import xbee
for i in list(xbee.discover()):
print(i)

2. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

3. At the MicroPython >>> prompt, right-click and select the Paste option.
4. Press Ctrl+D to run the code.

Running the above code will wait for 10 seconds then print out a list of all the responses that were
received during that time. This method has less chance of missing a response due to processing, but
uses more memory at run time as it has to keep track of all the responses at once.

xbee.transmit() examples

xbee.transmit() using constants
In this example, the MicroPython code transmits a broadcast message using the xbee.ADDRESS_
BROADCAST constant.

Note You can copy and paste code from the online version of the Digi MicroPython Programming
Guide. Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

import xbee
test_data = 'Hello World!'
xbee.transmit(xbee.ADDR_BROADCAST,test_data)

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. If the transmission attempt is successful,

the MicroPython prompt is returned or else the appropriate error message is displayed.

xbee.transmit() using byte string
In this example, the MicroPython code transmits a broadcast message using the xbee.ADDRESS_
BROADCAST constant.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

XBee device examples xbee.transmit() examples

Digi MicroPython Programming Guide 182

import xbee
test_data = 'Hello World!'
xbee.transmit(b'\x00\x13\xa2\xff\xad\x95\x5a\xa8', test_data)

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. If the transmission attempt is successful,

the MicroPython prompt is returned or else the appropriate error message is displayed.

	Digi MicroPython Programming Guide
	Reference material

	Which features apply to my device?
	Use MicroPython
	Access the MicroPython environment
	Enter MicroPython code
	Direct entry

	Exit MicroPython
	Display tools
	Coding tips
	Recover an XBee device

	MicroPython syntax
	Colons
	After conditional statements and loop statements

	Indentations
	FOR loop with one statement indented
	FOR loop with two statements indented

	Functions
	Function with arguments

	Errors and exceptions
	Syntax error
	Example

	Name error
	Referencing a name that was not created
	Referencing a name from one function that was created in a different function

	OSError
	Socket errors
	ENOTCONN: Time out error
	ENFILE: No sockets are available
	ENXIO: No such device or address

	Keyboard shortcuts
	Keyboard shortcuts
	Select a previously typed statement

	Differences between MicroPython and other programming languages
	Memory management
	Variable types
	Syntax
	Curly braces and indentation
	Semicolons
	Increment operator
	Logical operators

	Develop applications on an XBee device
	Space allocated to MicroPython
	Code storage
	Built-in modules embedded in XBee firmware (device flash)
	Source code in .py files (file system)
	Parsed and compiled code in .mpy files (file system)
	Executable code on MicroPython heap (device RAM)
	Compiled modules relocated from file system to device flash

	How to organize your code
	Run code at startup
	Monitor memory usage
	The gc module
	The micropython module

	Efficient coding
	Application evolution
	One-liners in the REPL
	Short blocks in paste mode
	Flash upload mode
	Modules stored as .py files
	Compiled modules stored as .mpy files
	Compiled modules via Flash upload mode
	Compiled modules embedded in device flash

	Digi modified slicing for bytes and strings operations

	Power management in MicroPython
	Prevent sleep from MicroPython
	XBee Cellular Modem:
	XBee 3 Zigbee RF Module, XBee 3 802.15.4 RF Module, XBee 3 DigiMesh RF Module...

	Initiate sleep from MicroPython
	XBee Cellular Modem:
	XBee 3 Zigbee RF Module, XBee 3 802.15.4 RF Module, XBee 3 DigiMesh RF Module:

	Sleeping with AT commands
	Idle a device from MicroPython
	Enter and exit the idle state
	Poll for data while the device is idle

	Access the primary UART
	How to use the primary UART
	sys.stdin limitations

	Example: read bytes from the UART
	Example: read the first 15 bytes from the UART

	REPL (Read-Evaluate-Print Loop) examples
	Ctrl+A: Enter raw REPL mode
	Ctrl+B: Print the MicroPython banner
	Print the banner
	Print the banner and verify that the memory was not wiped

	Ctrl+C: Regain control of the terminal
	Ctrl+D: Reboot the MicroPython REPL
	Ctrl+E: Enter paste mode
	Paste one line of code
	Paste a code segment

	Ctrl+F: Upload code to flash
	Load code to flash memory
	Erase the code stored in flash memory

	Flash memory and automatic code execution
	Run stored code at start-up to flash LEDs
	Disable code from running at start up
	Ctrl+R: Run code in flash
	Enable code to run at start-up

	Perform a soft-reset or reboot

	Access file system in MicroPython
	Modify file system contents
	uos.chdir(dir)
	uos.getcwd()
	uos.ilistdir([dir])
	uos.listdir([dir])
	uos.mkdir(dir)
	uos.remove(file)
	uos.rmdir(dir)
	uos.rename(old_path, new_path)
	uos.replace(old_path, new_path)
	uos.sync()
	uos.compile(source_file, mpy_file=None)
	uos.format()
	uos.hash([secure_file])

	Access data in files
	File object methods
	read(size=-1)
	readinto(b)
	readline(size=-1)
	readlines()
	write(b)
	seek(offset, whence=0)
	tell()
	flush()
	close()

	Import modules from file system
	Reload a module
	Compiled MicroPython files

	Send and receive User Data Relay frames
	Constants
	Interfaces (always defined)
	Limits

	Methods
	relay.receive()
	relay.send(dest, data)
	Exceptions
	relay.callback(my_callback)

	Examples

	MicroPython libraries on GitHub
	MicroPython modules
	XBee-specific functions
	Standard modules and functions
	Discover available modules

	Machine module
	Reset-cause
	Constants

	Random numbers
	Unique identifier
	Class PWM (pulse width modulation)
	Class ADC: analog to digital conversion
	Constructors
	Methods
	Sample program

	Class I2C: two-wire serial protocol
	Constructors
	General methods
	Standard bus operations methods
	Memory operations methods
	Sample programs

	Class Pin
	Class UART
	Test the UART interface
	Use the UART class
	Constructors
	Methods
	Constants

	Class WDT: watchdog timer
	Access the XBee device's I/O pins
	Use the Pin() constructor
	Use mode() to configure a pin
	Pin.DISABLED
	Pin.IN
	Pin.OUT
	Pin.ALT
	Pin.ANALOG
	Pin.OPEN_DRAIN and Pin.ALT_OPEN_DRAIN

	Use pull() to configure an internal pull up/down resistor

	digi.ble module
	Feature support
	active()
	config()
	Query a value
	Update configuration values

	disconnect_code()
	gap_connect()
	<addr_type>
	<address>
	<timeout_ms>
	<interval_us>, <window_us>
	<onclose>
	Return value

	gap_connection methods
	gattc_services()
	gattc_characteristics()
	gattc_descriptors()
	gattc_read_characteristic()
	gattc_configure()
	gattc_read_descriptor()
	gattc_write_characteristic()
	gattc_write_descriptor()
	addr()
	close()
	config()
	isconnected()
	secure()
	io_callbacks()
	delete_bondings()
	passkey_enter()
	passkey_confirm()

	UUID()
	<value>
	Return value

	gap_scan()
	<duration_ms>
	<interval_us>, <window_us>
	<oldest>
	Return value

	gap_scan methods
	get()
	any()
	stop()
	stopped()

	gap_scan advertisement format
	Use gap_scan as an iterator
	Use gap_scan as a context manager
	gap_advertise()
	<interval_us>
	<adv_data>
	Return value

	xbee_connect()
	<gap_connection>
	<receive>
	<password>
	<timeout>
	Return value

	xbee_connection methods
	digi.ble samples
	Generic gap advertising and gap scanning samples
	Eddystone Beaconing samples
	iBeacon samples

	Troubleshooting
	Fewer advertisements than expected when using gap_scan

	Cellular network configuration module
	Configure a specific network interface
	class Cellular
	Constructors
	Cellular power and airplane mode method
	Verify cellular network connection method
	Cellular connection configuration method
	Send an SMS message method
	Receive an SMS message method
	Register an SMS Receive Callback method
	Cellular shutdown method
	RSRP/RSRQ reporting in MicroPython

	XBee module
	AT commands that do not work in MicroPython
	class XBee on XBee Cellular Modem
	Constructors
	Methods

	XBee MicroPython module on the XBee 3 RF Modules
	Functions
	atcmd()
	discover()
	receive()
	receive_callback(rx_callback)
	transmit()
	modem_status

	digi.cloud module
	Create and upload data points
	class DataPoints
	Constructor
	Optional parameter
	Add a data point method
	Upload data to Digi Remote Manager method
	Check the status of a DataPoints object
	The life-cycle of a DataPoints object
	Delete a DataPoints object

	Receive a Data Service Device Request
	class device_request
	Use the read(size=-1) method
	Use the readinto(b) method
	Use the write(b) method
	Use the close() method

	Use the API Explorer to send Device Requests
	digi.cloud.Console() object
	isconnected() method
	read(size) method
	readinto(buf) method
	write(buf) method
	close() method

	The ussl module
	ussl on the XBee Cellular Modem
	Syntax
	Usage

	digi.gnss module
	GNSS module methods
	single_acquisition(callback, timeout=60)
	raw_mode(callback)

	GNSS examples

	Terminal redirection
	dupterm(stream_obj, index=0)

	Use AWS IoT from MicroPython
	Add an XBee Cellular Modem as an AWS IoT device
	Create a policy for access control
	Create a Thing
	Install the certificates
	Test the connection
	Publish to a topic
	Confirm published data
	Subscribe to updates from AWS

	Time module example: get the current time
	Retrieve the local time
	Retrieve time with a loop
	Delay and timing quick reference

	Cellular network connection examples
	Check the network connection
	Check network connection with a loop
	Check network connection and print connection parameters

	Socket examples
	Sockets
	Basic socket operations: sending and receiving data, and closing the network ...
	Basic data exchange code sample
	Response header lines

	Specialized receiving: send received data to a specific memory location
	DNS lookup
	DNS lookup code output

	Set the timeout value and blocking/non-blocking mode
	Send an HTTP request and dump the response
	Socket errors
	ENOTCONN: Time out error
	ENFILE: No sockets are available
	ENXIO: No such device or address

	Unsupported methods

	I/O pin examples
	Change I/O pins
	Print a list of pins
	Change output pin values: turn LEDs on and off
	Poll input pin values
	Check the configuration of a pin
	Check the pull-up mode of a pin
	Measure voltage on the pin (Analog to Digital Converter)

	SMS examples
	Send an SMS message
	Send an SMS message to a valid phone number
	Check network connection and send an SMS message
	Send to an invalid phone number
	Receive an SMS message
	Sample code

	Receive an SMS message using a callback

	XBee device examples
	Print the temperature of the XBee Cellular Modem
	Print the temperature of the XBee 3 Zigbee RF Module
	Print a list of AT commands
	xbee.discover() examples
	Handle responses as they are received
	Gather all responses into a list

	xbee.transmit() examples
	xbee.transmit() using constants
	xbee.transmit() using byte string

