

TEACHING RESOURCES

SCHEMES OF WORK
DEVELOPING A SPECIFICATION
COMPONENT FACTSHEETS
HOW TO SOLDER GUIDE

CREATE YOUR OWN SPEAKER DOCK WITH THIS

DELUXE STEREO AMPLIFIER KIT

www.kitronik.co.uk/2180

Index of Sheets

Introduction

Schemes of Work

Answers

The Design Process

The Design Brief

Investigation / Research

Developing a Specification

Design

Design Review (group task)

Soldering in 8 Steps

Resistor Values

Capacitor Basics

Ceramic Disc Capacitors

Diodes

LEDs & Current Limit Resistors

LEDs Continued

Evaluation

Packaging Design

ESSENTIAL INFORMATION

Build Instructions

Checking Your PCB

Designing the Enclosure

How the Circuit Works

Online Information

www.kitronik.co.uk/2180

Introduction

About the project kit

Both the project kit and the supporting material have been carefully designed for use in KS3 Design and Technology lessons. The project kit has been designed so that even teachers with a limited knowledge of electronics should have no trouble using it as a basis from which they can form a scheme of work.

The project kits can be used in two ways:

- 1. As part of a larger project involving all aspects of a product design, such as designing an enclosure for the electronics to fit into.
- 2. On their own as a way of introducing electronics and electronic construction to students over a number of lessons.

This booklet contains a wealth of material to aid the teacher in either case.

Using the booklet

The first few pages of this booklet contain information to aid the teacher in planning their lessons and also covers worksheet answers. The rest of the booklet is designed to be printed out as classroom handouts. In most cases all of the sheets will not be needed, hence there being no page numbers; teachers can pick and choose as they see fit.

Please feel free to print any pages of this booklet to use as student handouts in conjunction with Kitronik project kits.

Support and resources

You can also find additional resources at www.kitronik.co.uk. There are component fact sheets, information on calculating resistor and capacitor values, puzzles and much more.

Kitronik provide a next day response technical assistance service via e-mail. If you have any questions regarding this kit or even suggestions for improvements, please e-mail us at:

support@kitronik.co.uk

Alternatively, phone us on +44 (0) 115 970 4243.

www.kitronik.co.uk/2180

Schemes of Work

Two schemes of work are included in this pack; the first is a complete project including the design & manufacture of an enclosure for the kit (below). The second is a much shorter focused practical task covering just the assembly of the kit (next page). Equally, feel free to use the material as you see fit to develop your own schemes.

Before starting we would advise that you build a kit yourself. This will allow you to become familiar with the project and will provide a unit to demonstrate.

Complete product design project including electronics and enclosure

Hour 1	Introduce the task using 'The Design Brief' sheet. Demonstrate a built unit. Take students through the
	design process using 'The Design Process' sheet.
	Homework: Collect examples of bike lights / safety lights or similar products. List the common features
	of these products on the 'Investigation / Research' sheet.
Hour 2	Develop a specification for the project using the 'Developing a Specification' sheet.
	Resource: Sample of products.
	Homework: Using the internet or other search method, find out what is meant by 'design for
	manufacture'. List five reasons why design for manufacture should be considered on any design project.
Hour 3	Read 'Designing the Enclosure' sheet. Develop a product design using the 'Design' sheet.
	Homework: Complete design.
Hour 4	Using cardboard, get the students to model their enclosure design. Allow them to make alterations to
	their design if the model shows any areas that need changing.
Hour 5	Split the students into groups and get them to perform a group design review using the 'Design Review'
	sheet.
Hour 6	Using the 'Soldering in Eight Steps' sheet, demonstrate and get students to practice soldering. Start the
	'Resistor Value' and 'Capacitor Basics' worksheets.
	Homework: Complete any of the remaining resistor / capacitor tasks.
Hour 7	Build the electronic kit using the 'Build Instructions'.
Hour 8	Complete the build of the electronic kit. Check the completed PCB and fault find if required using the
	'Checking Your PCB' section and the fault-finding flow chart.
	Homework: Read 'How the Circuit Works' sheet.
Hour 9	Build the enclosure.
	Homework: Collect some examples of instruction manuals.
Hour 10	Build the enclosure.
	Homework: Read 'Instruction Manual' sheet and start developing instructions for the amplifier.
Hour 11	Build the enclosure.
Hour 12	Using the 'Evaluation' and 'Improvement' sheet, get the students to evaluate their final product and

Additional Work

Package design for those who complete ahead of others.

www.kitronik.co.uk/2180

Electronics only

Hour 1	Introduction to the kit demonstrating a built unit. Using the 'Soldering in Eight Steps' sheet, practice
	soldering.
Hour 2	Build the kit using the 'Build Instructions'.
Hour 3	Check the completed PCB and fault find if required using 'Checking Your PCB' and fault-finding flow
	chart.

Answers

Resistor questions

1st Band	2nd Band	Multiplier x	Value
Brown	Black	Yellow	100,000 Ω
Green	Blue	Brown	560 Ω
Brown	Grey	Yellow	180,000Ω
Orange	White	Black	39Ω

Value	1st Band	2nd Band	Multiplier x
180 Ω	Brown	Grey	Brown
3,900 Ω	Orange	White	Red
47,000 (47K) Ω	Yellow	Violet	Orange
1,000,000 (1M) Ω	Brown	Black	Green

Capacitor Ceramic Disc values

Printing on capacitor	Two digit start	Number of zero's	Value in pF
222	22	00	2200pF (2.2nF)
103	10	000	10000pF (10nF)
333	33	000	33000pF (33nF)
473	47	000	47000pF (47nF)

RC Time Constants

Resistor Value	Capacitor Value	RC Time Constant
2,000,000 (2ΜΩ)	0.000,1 (100μF)	200 Seconds
100,000 (100ΚΩ)	0.000,1 (100μF)	10 Seconds
100,000 (100ΚΩ)	0.000,047 (47μF)	4.7 Seconds

www.kitronik.co.uk/2180

The Design Process

The design process can be short or long, but will always consist of a number of steps that are the same on every project. By splitting a project into these clearly defined steps, it becomes more structured and manageable. The steps allow clear focus on a specific task before moving to the next phase of the project. A typical design process is shown on the right.

Design Brief

What is the purpose or aim of the project? Why is it required and who is it for?

Investigation

Research the background of the project. What might the requirements be? Are there competitors and what are they doing? The more information found out about the problem at this stage, the better, as it may make a big difference later in the project.

Specification

This is a complete list of all the requirements that the project must fulfil - no matter how small. This will allow you to focus on specifics at the design stage and to evaluate your design. Missing a key point from a specification can result in a product that does not fulfil its required task.

Design

Develop your ideas and produce a design that meets the requirements listed in the specification. At this stage it is often normal to prototype some of your ideas to see which work and which do not.

Build

Build your design based upon the design that you have developed.

Evaluate

Does the product meet all points listed in the specification? If not, return to the design stage and make the required changes. Does it then meet all of the requirements of the design brief? If not, return to the specification stage and make improvements to the specification that will allow the product to meet these requirements and repeat from this point. It is normal to have such iterations in design projects, though you normally aim to keep these to a minimum.

Improve

Do you feel the product could be improved in any way? These improvements can be added to the design.

www.kitronik.co.uk/2180

The Design Brief

A manufacturer of MP3 players has developed an audio amplifier circuit. The circuit has been developed to the point where they have a working Printed Circuit Board (PCB). Although they are used to the design of MP3 players, they have not designed an amplifier case before.

The manufacturer would like ideas for an enclosure for the PCB, batteries, and speakers to be mounted in. The manufacturer has asked you to do this for them. It is important that you make sure the final design meets all the requirements that you identify for such a product.

Some of the key features of the deluxe amplifier circuit are:

- Two 66mm speakers
- Volume Control
- Power switch and LED
- Battery or USB power

Complete Circuit

A fully built circuit is shown below.

www.kitronik.co.uk/2180

Investigation / Research

Using a number of different search methods, find examples of similar products that are already on the market. Use additional pages if required.

Name	Class

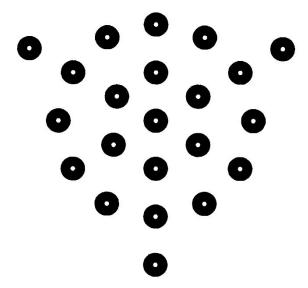
www.kitronik.co.uk/2180

Developing a Specification

Using your research into the target market for the product, identify the key requirements for the product and explain why each of these is important.

Name	Class
Requirement	Reason
Example: The enclosure should have holes in it.	Example: So that the LED can be seen.

www.kitronik.co.uk/2180


Mounting the Speaker

To get the best performance from your amplifier, you will need to mount the speaker into an enclosure. If the speaker is left in open air, as the paper cone moves in and out, the air will move around the edge of the speaker, giving it poor performance. Try listening to the difference in audio quality with the speaker in the open air, and then cup your hands around the speaker. It is much better when you stop the air going around the edge of the speaker and force it to be pushed forward.

This is why it's so important to mount the speaker. You will have to let the sound out and can design your own speaker grill, or simply you can use the example shown below.

The speaker grill pattern bellow has been designed for the speaker supplied. The three outer points have been designed as retaining points for holding the speaker in place.

The grill is printed to size and can be used when developing your enclosure design as well as for a template for drilling the holes when you are building your enclosure. The recommended drill size is 6mm, except for the three outer points, which may need to be different depending upon how these are used to secure the speaker.

www.kitronik.co.uk/2180

Design

Develop your ideas to produce a design that meets the requirements listed in the specification.			
Name	Class		

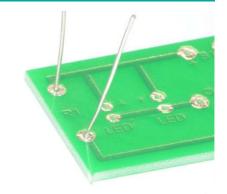
www.kitronik.co.uk/2180

Design Review (group task)

Split into groups of three or four. Take it in turns to review each person's design against the requirements of their specification. Also look to see if you can spot any additional aspects of each design that may cause problems with the final product. This will allow you to ensure that you have a good design and catch any faults early in the design process. Note each point that is made and the reason behind it. Decide if you are going to accept or reject the comment made. Use these points to make improvements to your initial design.

Comment	Reason for comment	Accept or Reject

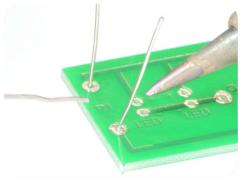
www.kitronik.co.uk/2180



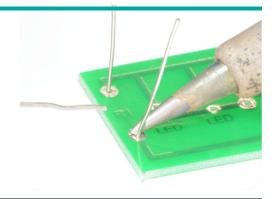
Soldering in 8 Steps

INSERT COMPONENT

Place the component into the board, making sure that it goes in the correct way around, and the part sits closely against the board. Bend the legs slightly to secure the part. Place the board so you can access the pads with a soldering iron.


CLEAN SOLDERING IRON

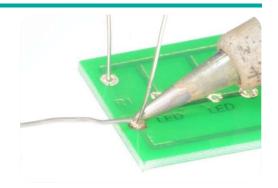
Make sure the soldering iron has warmed up. If necessary use a brass soldering iron cleaner or damp sponge to clean the tip.


PICKUP IRON AND SOLDER

Pick up the Soldering Iron in one hand, and the solder in the other hand.

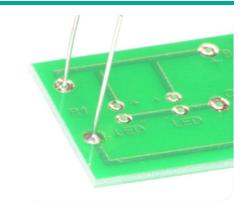
HEAT PAD

Place soldering iron tip on the pad.


www.kitronik.co.uk/2180

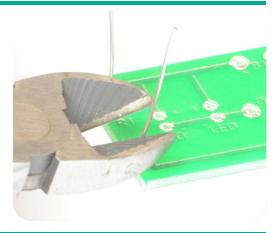
5

APPLY SOLDER


Feed a small amount of solder into the joint. The solder should melt on the pad and flow around the component leg.

6

STOP SOLDERING


Remove the solder, and then remove the soldering iron.

7

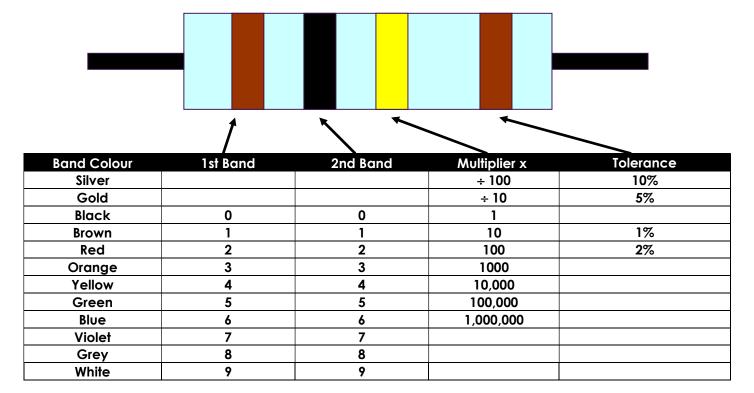
TRIM EXCESS

Leave the joint to cool for a few seconds, then using a pair of cutters trim the excess component lead.

8

REPEAT

Repeat this process for each solder joint required.


www.kitronik.co.uk/2180

Resistor Values

A resistor is a device that opposes the flow of electrical current. The bigger the value of a resistor, the more it opposes the current flow. The value of a resistor is given in Ω (ohms) and is often referred to as its 'resistance'.

Identifying resistor values

Example: Band 1 = Red, Band 2 = Violet, Band 3 = Orange, Band 4 = Gold

The value of this resistor would be:

2 (Red) **7** (Violet) x **1,000** (Orange) = 27 x 1,000

= **27,000** with a 5% tolerance (gold)

= 27KΩ

Too many zeros?

Kilo ohms and mega ohms can be used:

 $1,000\Omega = 1K$

1,000K = 1M

Resistor identification task

Calculate the resistor values given by the bands shown below. The tolerance band has been ignored.

1st Band	2nd Band	Multiplier x	Value
Brown	Black	Yellow	
Green	Blue	Brown	
Brown	Grey	Yellow	
Orange	White	Black	

www.kitronik.co.uk/2180

Calculating resistor markings

Calculate what the colour bands would be for the following resistor values.

Value	1st Band	2nd Band	Multiplier x
180 Ω			
3,900 Ω			
47,000 (47K) Ω			
1,000,000 (1M) Ω			

What does tolerance mean?

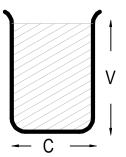
Resistors always have a tolerance but what does this mean? It refers to the accuracy to which it has been manufactured. For example, if you were to measure the resistance of a gold tolerance resistor you can guarantee that the value measured will be within 5% of its stated value. Tolerances are important if the accuracy of a resistors value is critical to a design's performance.

Preferred values

There are a number of different ranges of values for resistors. Two of the most popular are the E12 and E24. They take into account the manufacturing tolerance and are chosen such that there is a minimum overlap between the upper possible value of the first value in the series and the lowest possible value of the next. Hence there are fewer values in the 10% tolerance range.

E-12 resistance tolerance (± 10%)											
10	12	15	18	22	27	33	39	47	56	68	82

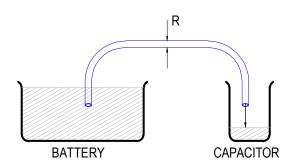
E-24 resistance tolerance (± 5 %)											
10	11	12	13	15	16	18	20	22	24	27	30
33	36	39	43	47	51	56	62	68	75	82	91

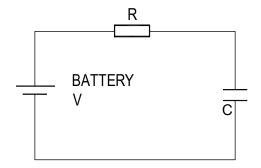


www.kitronik.co.uk/2180

Capacitor Basics

What is a capacitor?

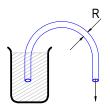



A capacitor is a component that can store electrical charge (electricity). In many ways, it is like a rechargeable battery.

A good way to imagine a capacitor is as a bucket, where the size of the base of the bucket is equivalent to the capacitance (C) of the capacitor and the height of the bucket is equal to its voltage rating (V).

The amount that the bucket can hold is equal to the size of its base multiplied by its height, as shown by the shaded area.

Filling a capacitor with charge



When a capacitor is connected to an item such as a battery, or in this kit a solar cell, charge will flow from the battery into it. Therefore, the capacitor will begin to fill up. The flow of water in the picture above left is the equivalent of how the electrical charge will flow in the circuit shown on the right.

The speed at which any given capacitor will fill depends on the resistance (R) through which the charge will have to flow to get to the capacitor. You can imagine this resistance as the size of the pipe through which the charge has to flow. The larger the resistance, the smaller the pipe and the longer it will take for the capacitor to fill.

Emptying (discharging) a capacitor

Once a capacitor has been filled with an amount of charge, it will retain this charge until it is connected to something into which this charge can flow.

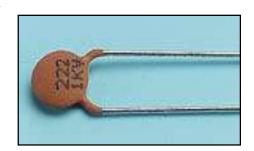
The speed at which any given capacitor will lose its charge will, like when charging, depend on the resistance (R) of the item to which it is connected. The larger the resistance, the smaller the pipe and the longer it will take for the capacitor to empty.

Maximum working voltage

Capacitors also have a maximum working voltage that should not be exceeded. This will be printed on the capacitor or can be found in the catalogue the part came from. You can see that the capacitor on the right is printed with a 10V maximum working voltage.

www.kitronik.co.uk/2180

Ceramic Disc Capacitors


Values

The value of a capacitor is measured in Farads, though a 1 Farad capacitor would be very big. Therefore, we tend to use milli Farads (mF), micro Farads (μ F), nano Farads (nF) and pico Farads (pF). A μ F is a millionth of a Farad, 1μ F = 1000 nF and 1nF = 1000 pF.

1F	= 1,000mF
1F	= 1,000,000µF
1F	= 1,000,000,000nF
1F	= 1,000,000,000,000pF

The larger electrolytic capacitors tend to have the value printed on the side of them along with a black band showing the negative lead of the capacitor.

Other capacitors, such as the ceramic disc capacitor shown on the right, use a code. They are often smaller and may not have enough space to print the value in full, hence the use of the 3-digit code. The first 2 digits are the first part of the number and the third digit gives the number of zeros to give its value in pF.

Example: $104 = 10 + 0000 (4 \text{ zero's}) = 100,000 \text{ pF} (\text{which is also } 0.1 \text{ }\mu\text{F})$

Work out what value the four capacitors are in the table below.

Printing on capacitor	Two digit start	Number of zero's	Value in pF
222			
103			
333			
473			

www.kitronik.co.uk/2180

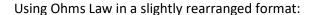
LEDs & Current Limit Resistors

An LED is a special diode. LED stands for Light Emitting Diode. LEDs are like normal diodes, in that they only allow current to flow in one direction, however, when the current is flowing, the LED lights up.

The symbol for an LED is the same as the diode but with the addition of two arrows to show that there is light coming from the diode. As the LED only allows current to flow in one direction, it's important that we can work out which way the electricity will flow. This is indicated by a flat edge on the LED.

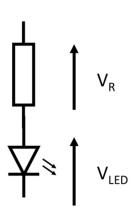
For an LED to light properly, the amount of current that flows through it needs to be controlled. To do this we use a current limit resistor. If we didn't use a current limit resistor the LED would be very bright for a short amount of time, before being permanently destroyed.

To work out the best resistor value we need to use Ohm's Law. This connects the voltage across a device and the current flowing through it to its resistance.


Ohm's Law tells us that the flow of current (I) in a circuit is given by the voltage (V) across the circuit divided by the resistance (R) of the circuit.

$$I = \frac{V}{R}$$

Like diodes, LEDs drop some voltage across them: typically 1.8 volts for a standard LED. The forward voltage for the particular red LED used in this kit is 2.1V.


If using the 3xAA battery cage supplied with the kit, these will provide 4.5V, so there must be a total of 4.5 volts dropped across the LED (V_{LED}) and the resistor (V_R). As the LED manufacturer's datasheet tells us that there is 2.1 volts dropped across the LED, there must be 2.4 volts dropped across the resistor. $(V_{LED} + V_R = 2.1 + 2.4 = 4.5V)$.

LEDs normally need about 10mA to operate at a good brightness. Since we know that the voltage across the current limit resistor is 2.4 volts and we know that the current flowing through it is 0.01 Amps, the resistor can be calculated.

$$R = \frac{V}{I} = \frac{2.4}{0.01} = 240\Omega$$

As this LED doesn't need to be very bright, we'll use a slightly larger value to decrease the current – 330Ω.

www.kitronik.co.uk/2180

LEDs Continued

Packages

LEDs are available in many shapes and sizes. The 5mm round LED is the most common. The colour of the plastic lens is often the same as the actual colour of light emitted - but not always with high brightness LEDs.

Advantages of using LEDs over bulbs

Some of the advantages of using an LED over a traditional bulb are:

Power efficiency LEDs use less power to produce the same amount of light, which means that they are

more efficient. This makes them ideal for battery power applications.

Long life LEDs have a very long life when compared to normal light bulbs. They also fail by

gradually dimming over time instead of a sharp burn out.

Low temperature Due to the higher efficiency of LEDs, they can run much cooler than a bulb.

Hard to break LEDs are much more resistant to mechanical shock, making them more difficult to break

than a bulb.

Small LEDs can be made very small. This allows them to be used in many applications, which

would not be possible with a bulb.

Fast turn on LEDs can light up faster than normal light bulbs, making them ideal for use in car brake

Disadvantages of using LEDs

Some of the disadvantages of using an LED over a traditional bulb are:

Cost LEDs currently cost more for the same light output than traditional bulbs. However, this

needs to be balanced against the lower running cost of LEDs due to their greater efficiency.

Drive circuit To work in the desired manner, an LED must be supplied with the correct current. This could

take the form of a series resistor or a regulated power supply.

Directional LEDs normally produce a light that is focused in one direction, which is not ideal for some

applications.

Typical LED applications

Some applications that use LEDs are:

- Bicycle lights
- Car lights (brake and headlights)
- Traffic lights
- Indicator lights on consumer electronics
- **Torches**
- Backlights on flat screen TVs and displays
- Road signs
- Information displays
- Household lights
- Clocks

www.kitronik.co.uk/2180

Instruction Manual

Your amplifier is going to be supplied with some instructions. Identify four points that must be included in the instructions and give a reason why.

Point to include:	Point to include:
Reason:	Reason:
[a	
l Daint ta include:	Point to include:
Point to include:	Point to include:
Point to include:	Point to include:
Point to include:	Point to include:
Point to include:	Point to include:
Point to include:	Point to include:
Point to include:	Point to include:
Point to include:	Point to include:
Point to include:	Point to include:
Point to include:	Point to include: Reason:

www.kitronik.co.uk/2180

Evaluation

Good aspects of the design

It is always important to evaluate your design once it is complete. This will ensure that it has met all of the requirements defined in the specification. In turn, this should ensure that the design fulfils the design brief.

Check that your design meets all of the points listed in your specification.

Show your product to another person (in real life this person should be the kind of person at which the product is aimed). Get them to identify aspects of the design, which parts they like and aspects that they feel could be improved.

Areas that could be improved

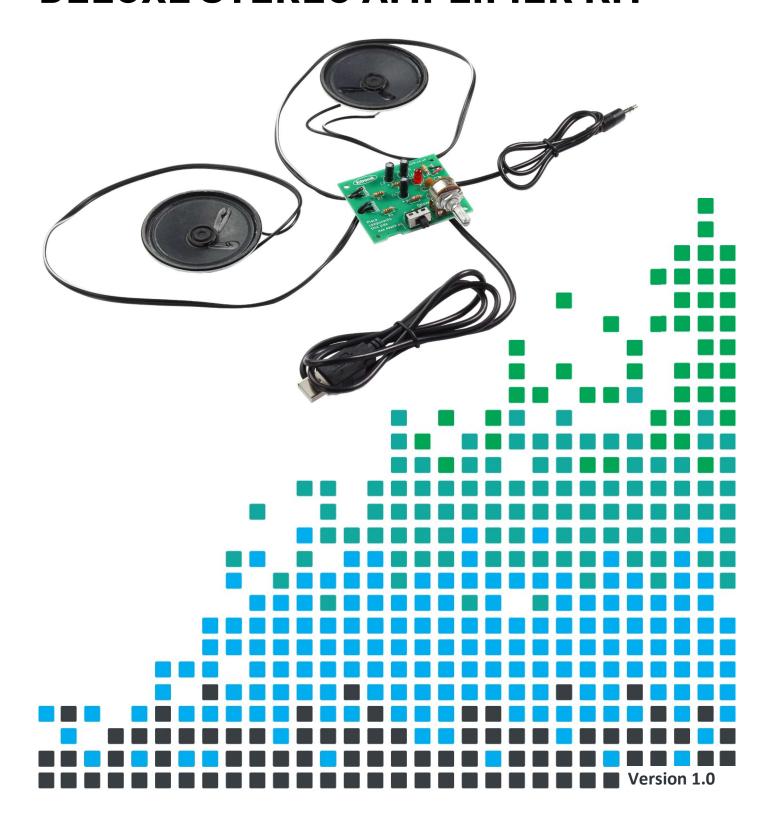
Improvements Every product on the market is constantly subject to redesign and improvement. What aspects of your design do you feel you could improve? List the aspects that could be improved and where possible, draw a sketch showing the changes that you would make.							

www.kitronik.co.uk/2180

Packaging Design

If your product was to be sold in a high street electrical retailer, what requirements would the packaging have? List these giving the reason for the requirement.

Requirement	Reason
Develop a packaging design for your p	roduct that meets these requirements. Use additional pages if required.



ESSENTIAL INFORMATION

BUILD INSTRUCTIONS
CHECKING YOUR PCB & FAULT-FINDING
MECHANICAL DETAILS
HOW THE KIT WORKS

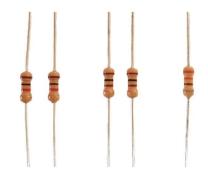
CREATE YOUR OWN SPEAKER DOCK WITH THIS

DELUXE STEREO AMPLIFIER KIT

www.kitronik.co.uk/2180

Build Instructions

Before you start, take a look at the Printed Circuit Board (PCB). The components go in the side with the writing on and the solder goes on the side with the tracks and silver pads.


SOLDER THE RESISTORS

Start with the five resistors. The text on the PCB shows where R1, R2 etc go. Ensure that you put the resistors in the right place.

It does not matter which way round they go.

Once you are happy with them, solder in place.

	117 ,	
PCB Ref	Value	Colour Bands
R1 & R2	1kΩ	Brown, black, red
R3 & R4	100Ω	Brown, black, brown
R6	330Ω	Orange, orange, brown

SOLDER THE CERAMIC DISK CAPACITORS

There are two ceramic disc capacitors (as shown right). These should be soldered into C1 and C2. It does not matter which way round they go.

SOLDER THE LED

Solder the LED into the PCB where it is labelled LED1. When putting it into the board, make sure that the flat edge on the LED matches the outline on the PCB.

SOLDER THE ELECTROLYTIC CAPACITORS

Now solder in the three electrolytic capacitors (an example is shown right). They should be soldered into C3, C4 and C5. Make sure that the capacitors are the correct way round. The capacitors have a '-' sign marked on them, which should match the same sign on the PCB.

SOLDER THE SWITCH

Solder the PCB Mount Right Angled On / Off Switch into SW1. The row of three pins that exits the back of the switch must be soldered, but it doesn't matter if you can't solder the other two pins.

www.kitronik.co.uk/2180

SOLDER THE DUAL POTENTIOMETER

Solder the potentiometer into the PCB where it is labelled R5. Make sure the volume knob is facing away from the PCB.

CONNECT THE SPEAKERS

The kit is supplied with a meter of twin cable. This cable will be used to connect the two speakers. You will need to cut this to the required length for each speaker in your enclosure design.

Take each piece of wire that you have cut off and strip the ends of the wire. Solder one end of each wire to the two terminals on the speaker (shown right). Solder the other end of each wire to the terminals on the PCB marked 'SPEAKER1' and 'SPEAKER2', after feeding it through the strain relief hole. It does not matter which way around these connections go.

ATTACH THE BATTERY CAGE OR USB POWER LEAD

The power leads (from either the battery cage or the USB power lead) should be attached to the terminals labelled 'POWER'. Solder the red wire to '+' and solder the black wire to '-' after feeding it through the strain relief hole.

CONNECT THE AUDIO CABLE

The stereo Jack lead should be soldered to the 'INPUT' terminal. First, feed the wires through the strain relief hole. The black wire should be soldered to the terminal labelled 'BLK'. The other two can go the either of the two remaining inputs.

www.kitronik.co.uk/2180

Checking Your PCB

Check the following **before** you insert the batteries:

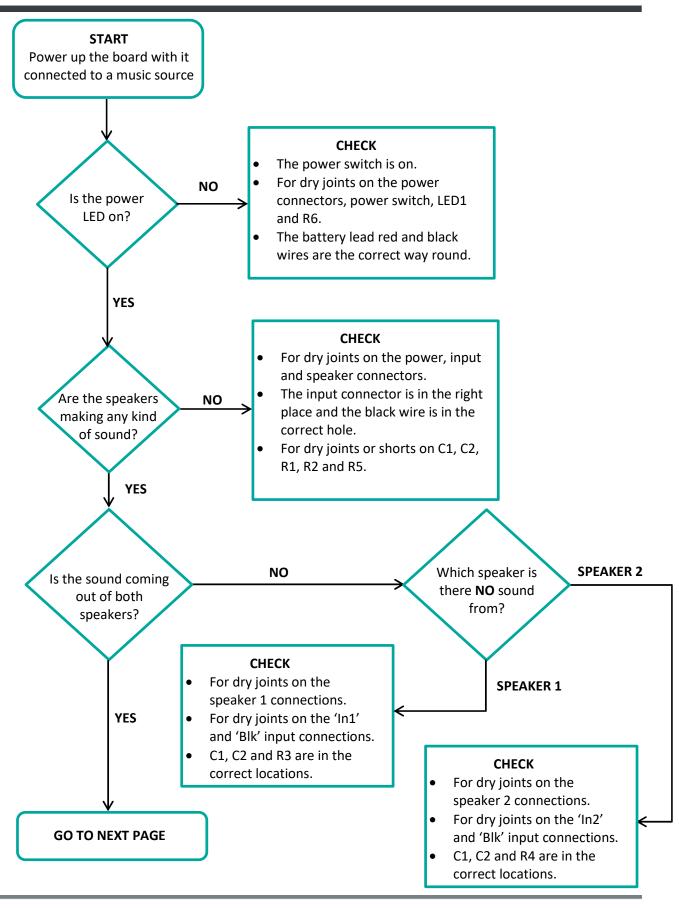
Audio equipment may become damaged if connected to an incorrectly built amplifier.

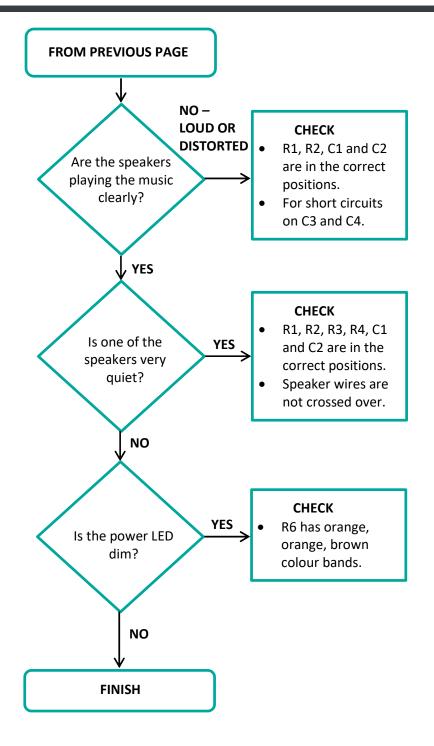
Check the bottom of the board to ensure that:

- All holes (except the large mounting holes) are filled with the lead of a component.
- All these leads are soldered.
- Pins next to each other are not soldered together.

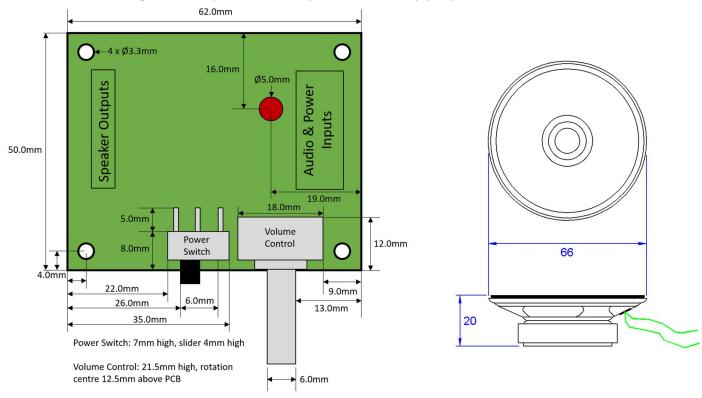
Check the top of the board to ensure that:

- The four wires are connected to the right place (power, stereo input, 2 x speaker).
- The '-' on the electrolytic capacitors match the same marks on the PCB.
- The colour bands on R1 and R2 are Brown, Black, Red.
- The colour bands on R3 and R4 are Brown, Black, Brown.
- The colour bands on R6 are Orange, Orange, Brown.
- C1 and C2 match the outline on the PCB.
- The battery lead red and black wires match the red and black text on the PCB.
- The flat edge on the LED matches the outline on the PCB.





www.kitronik.co.uk/2180



Designing the Enclosure

When you design the enclosure, you will need to consider:

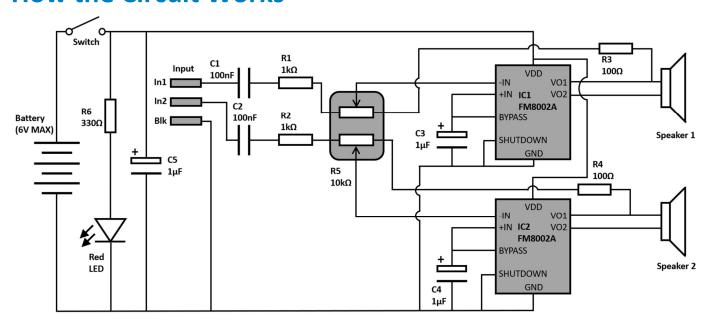
- The size of the PCB (below left, height including components = 26mm).
- How big the batteries are.
- How to mount the two speakers (below right).
- How to allow the audio cable out of the box.
- Are you making the amplifier for a particular MP3 player, if so, should the MP3 player go in the box?
- Position of the volume control, switch and LED.

These technical drawings of the amplifier PCB and speaker should help you plan for this (all dimensions in mm).

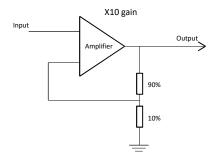
Mounting the PCB to the enclosure

The drawing to the left shows how a hex spacer can be used with two bolts to fix the PCB to the enclosure.

Your PCB has four mounting holes designed to take M3 bolts.



www.kitronik.co.uk/2180



How the Circuit Works

The deluxe stereo amplifier circuit is comprised of two identical mono amplifier circuits, with one taking 'In1' as an input and then sending amplified audio out to Speaker 1, and the other taking 'In2' as an input and sending amplified audio out to Speaker 2. At the centre of each mono amplifier circuit is an audio amplifier Integrated Circuit or IC. Inside the IC are lots of transistors, which are connected together to allow the small input signal to be amplified into a more powerful output that can drive a speaker.

All amplifiers need to use feedback to ensure that the amount of gain stays the same. This allows the output to be an exact copy of the input, just bigger. The gain is the number of times bigger the output is compared to the input. So, if an amplifier has a gain of 10 and there is 1 volt on the input, there will be 10 volts on the output. An operational amplifier has two inputs, these are called the inverting (-) and non-inverting (+) inputs. The output of the operational amplifier is the voltage on the non-inverting input less the voltage on the inverting input, multiplied by the amplifier's gain. In theory, an operational amplifier has unlimited gain so if the non-inverting input is a fraction higher than the inverting input (there is more + than -), the output will go up to the supply voltage. Change the inputs around and the output will go to zero volts. In this format the operational amplifier is acting as a comparator, it compares the two inputs and changes the output accordingly.

With an infinite gain the amplifier is no good to amplify audio, which is where the feedback comes in. By making one of the inputs a percentage of the output the gain can be fixed, which allows the output to be a copy of the input but bigger. Now when the two inputs are compared and the output is adjusted, instead of it going up or down until it reaches 0 volts or V+, it stops at the point when the two inputs match and the output is at the required voltage.

www.kitronik.co.uk/2180

Looking at the circuit diagram for the audio amplifier, it can be seen that the feedback path is via resistors R3 and R4, then through the potentiometer R5 (from VO1 to -IN on the FM8002A amplifier IC). To make the gain useful in our application, the variable potentiometer R5 can be used to adjust the ratio of the feedback to input resistors, which in turn varies the gain and therefore the output volume.

The gain of the amplifier is calculated using the following formula:

$$Gain = 2 \times \frac{R_f}{R_i}$$

Where Rf is the feedback resistor (R3 or R4 + part of R5), and Ri is the input resistor (R1 or R2 + part of R5). Therefore, the minimum and maximum gain of each mono amplifier section can be found to be:

$$Minimum\ Gain = 2 \times \frac{R3}{R1 + R5}$$

Minimum Gain =
$$2 \times \frac{100}{1000 + 10000}$$

 $Minimum\ Gain = 0.02$

$$Maximum \ Gain = 2 \times \frac{R3 + R5}{R1}$$

$$\textit{Maximum Gain} = 2 \times \frac{100 + 10000}{1000}$$

 $Maximum\ Gain = 20.2$

C5 is connected across the supply to make sure that it remains stable. The other capacitors have a filtering role, either to cut out high frequency noise or get the best out of the speaker.

A power switch is inserted in the positive (+V) power line, which is used to turn the amplifier on and off. There is also a power LED that lights up when the power switch is on. R6 is used to limit the current flowing into this LED, which stops it drawing too much power, which over time will damage the LED.

Online Information

Two sets of information can be downloaded from the product page where the kit can also be reordered from. The 'Essential Information' contains all of the information that you need to get started with the kit and the 'Teaching Resources' contains more information on soldering, components used in the kit, educational schemes of work and so on and also includes the essentials. Download from:

www.kitronik.co.uk/2180

This kit is designed and manufactured in the UK by Kitronik

Telephone +44 (0) 115 970 4243

Sales email: sales@kitronik.co.uk

Tech Support email: support@kitronik.co.uk

Web: www.kitronik.co.uk

kitronik.co.uk/twitter

kitronik.co.uk/facebook

kitronik.co.uk/youtube

kitronik.co.uk/instagram

Designed & manufactured in the UK by (Kitronik)

Every effort has been made to ensure that these notes are correct, however Kitronik accept no responsibility for issues arising from errors / omissions in the notes.

© Kitronik Ltd - Any unauthorised copying / duplication of this booklet or part thereof for purposes except for use with Kitronik project kits is not allowed without prior consent from Kitronik.

