empowering creative people

Arduino > Official

Arduino Nano V3.2

SKU: A000005

$36.00 AUD, inc GST

More Views

Arduino Nano V3.2
36 AUD

SKU: A000005

$36.00 AUD, inc GST
2 reviews 0 5 5
Ships today (delivered by Tue, 13th of Dec)
Shipping Offer

OR

The Arduino Nano is a small, complete, and breadboard-friendly board based on the ATmega328 (Arduino Nano 3.x). It has more or less the same functionality of the Arduino Duemilanove, but in a different package. It lacks only a DC power jack, and works with a Mini-B USB cable instead of a standard one.

Arduino Nano Specifications

Power

The Arduino Nano can be powered via the Mini-B USB connection, 6-20V unregulated external power supply (pin 30), or 5V regulated external power supply (pin 27). The power source is automatically selected to the highest voltage source.

Memory

The ATmega328 has 32 KB, (also with 2 KB used for the bootloader. The ATmega328 has 2 KB of SRAM and 1 KB of EEPROM.

Input and Output

Each of the 14 digital pins on the Nano can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

  • Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are connected to the corresponding pins of the FTDI USB-to-TTL Serial chip.
  • External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.
  • PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which, although provided by the underlying hardware, is not currently included in the Arduino language.
  • LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off. 

The Nano has 8 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the analogReference() function. Analog pins 6 and 7 cannot be used as digital pins. Additionally, some pins have specialized functionality:

  • I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire library (documentation on the Wiring website). 

There are a couple of other pins on the board:

  • AREF. Reference voltage for the analog inputs. Used with analogReference().
  • Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.

Communication

The Arduino Nano has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega328 provide UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An FTDI FT232RL on the board channels this serial communication over USB and the FTDI drivers (included with the Arduino software) provide a virtual com port to software on the computer. The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the FTDI chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Nano's digital pins.

The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus. To use the SPI communication, please see ATmega328 datasheet.

Programming

The Arduino Nano can be programmed with the Arduino software (download). Select "Arduino Duemilanove or Nano w/ ATmega328" from the Tools > Board menu (according to the microcontroller on your board).

The ATmega328 on the Arduino Nano comes preburned with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the original STK500 protocol.

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header using Arduino ISP or similar.

Automatic (Software) Reset

Rather then requiring a physical press of the reset button before an upload, the Arduino Nano is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the FT232RL is connected to the reset line of the ATmega328 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Nano is connected to either a computer running Mac OS X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Nano. While it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make sure that the software with which it communicates waits a second after opening the connection and before sending this data.

 

This product is listed in:

Documentation and Resources:
  • Arduino Boards, Compared
  • There are a bunch of Arduino boards, they come in different shapes and sizes, with different processing power, digital IO, and other capabilities. Rather than telling you guys what to buy, we have put together a handy guide to show you the capabiliti...
  • How to Use a Logic Level Shifter/Converter
  • So you’ve got your microcontroller/development board ready to go, you’ve got your sensors and external components and you’re ready to build an IoT device to make the world your slave. But hang on a minute, the sensor you have only o...
  • Arduino with LattePanda
  • Ah, Arduino and LattePanda coming together at last. What could be better? Well along with the fact that your LattePanda is a fully fledged Windows 10 computer so you can program any Arduino board you want as normal, one of the best things about Latte...
  • Potentiometers and the Arduino Uno
  • Variable resistors come in all shapes and sizes, and they all do the same basic job. They allow you precisely control voltage/current flow within a circuit. The most common type of variable resistor we see in DIY electronics is the Potentiometer, or ...
  • Relay Operation and the Arduino Uno
  • If you could operate your switch without physically toggling it on and off, you would open yourself up to an entire section of electronics. Relays are one of the best ways of doing this. A relay is essentially just a switch, controlled by an electrom...
  • Coffee Grinder With Arduino
  • Using a few bits and pieces, this ordinary coffee grinder now has two presets to run the motor for a programmable length of time. The idea being that the grinder running for a set amount of time will deliver a certain amount of coffee each button press meaning the beans can be stored unground, keeping them fresher for longer. I completed this project for a friend, Ian, who lives for coffee. Ian wanted the same functionality in h...
  • The Hipster Coaster
  • We wanted to make a interactive display of the fun that can be had with DIY projects to take to Sydney Mini Maker Faire. We decided to do so by utilising the TinkerKit Braccio from Arduino.org, alongside some 3D Printing ingenuity, for an engaging display for all ages. Enter the Hipster Coaster in all its glory.   All the parts were printed seperately on our family of Lulzbot 3D Printers, later stuck together using a mi...

Product Comments

Documentation and Resources:
  • Arduino Boards, Compared
  • There are a bunch of Arduino boards, they come in different shapes and sizes, with different processing power, digital IO, and other capabilities. Rather than telling you guys what to buy, we have put together a handy guide to show you the capabiliti...
  • How to Use a Logic Level Shifter/Converter
  • So you’ve got your microcontroller/development board ready to go, you’ve got your sensors and external components and you’re ready to build an IoT device to make the world your slave. But hang on a minute, the sensor you have only o...
  • Arduino with LattePanda
  • Ah, Arduino and LattePanda coming together at last. What could be better? Well along with the fact that your LattePanda is a fully fledged Windows 10 computer so you can program any Arduino board you want as normal, one of the best things about Latte...
  • Potentiometers and the Arduino Uno
  • Variable resistors come in all shapes and sizes, and they all do the same basic job. They allow you precisely control voltage/current flow within a circuit. The most common type of variable resistor we see in DIY electronics is the Potentiometer, or ...
  • Relay Operation and the Arduino Uno
  • If you could operate your switch without physically toggling it on and off, you would open yourself up to an entire section of electronics. Relays are one of the best ways of doing this. A relay is essentially just a switch, controlled by an electrom...
  • Coffee Grinder With Arduino
  • Using a few bits and pieces, this ordinary coffee grinder now has two presets to run the motor for a programmable length of time. The idea being that the grinder running for a set amount of time will deliver a certain amount of coffee each button press meaning the beans can be stored unground, keeping them fresher for longer. I completed this project for a friend, Ian, who lives for coffee. Ian wanted the same functionality in h...
  • The Hipster Coaster
  • We wanted to make a interactive display of the fun that can be had with DIY projects to take to Sydney Mini Maker Faire. We decided to do so by utilising the TinkerKit Braccio from Arduino.org, alongside some 3D Printing ingenuity, for an engaging display for all ages. Enter the Hipster Coaster in all its glory.   All the parts were printed seperately on our family of Lulzbot 3D Printers, later stuck together using a mi...

Customer Reviews

  1. Review by Dave verified purchaser
    Rating
    100

    This is a highest quality Nano I've used. Much-much better than many clones I've seen. The build quality is excellent and I'm assured that no counterfeit components are used in the build. Sure, it's more expensive than the el'cheapo clones but I use them to control astronomical video cameras worth $800, so why skimp on cheap components that may compromise overall quality.
    for more info see...
    www.kuriwaobservatory.com/TACOS_BD-System.html
    Dave (Posted on 5/11/2016)

  2. Review by Trevor verified purchaser
    Rating
    100

    This Unit worked great. I had no issues with the FTDI driver with this unit. I have had trouble with clone nano's. It was great to get support over the phone from Core Electronics about this issue.
    (Posted on 24/03/2016)

We deliver Australia-wide with these options:

  • $3 for Small Items (4-6 days, not tracked, only available on selected small items)
  • $6.95 for Standard Post (2-4 days, tracked)
  • $8.32 for Express Post (1-2 days, tracked)

If you order lots of gear, the postage amount might increment based on the weight of your order.

Our physical address (no pickups sorry!):

Unit 18, 132 Garden Grove Parade
Adamstown
NSW, 2289
Australia

Please checkout our customer service page if you have other frequently asked questions such as "do we do purchase orders" (yes!) or "are prices GST inclusive" (yes they are!). We're here to help - get in touch with us to talk shop.